Spectrum of definite type of self-adjoint operators in Krein spaces

M. Langer

joint work with H. Langer, A. Markus, and C. Tretter

For a self-adjoint operator \mathcal{A} in a Krein space \mathcal{K} we construct an interval $[\nu, \mu]$ outside of which the operator has only spectrum of definite type and possesses a local spectral function. The numbers μ and ν are constructed by means of spectral properties of the operators A, B and D, where

$$\mathcal{A} = \left[\begin{array}{cc} A & B \\ -B^* & D \end{array} \right]$$

is the block operator matrix representation of \mathcal{A} with respect to an arbitrary fundamental decomposition of \mathcal{K} .

As a consequence, a spectral subspace $\mathcal{L}_{\Delta}(\mathcal{A})$ corresponding to an interval Δ outside $[\nu, \mu]$ admits an angular operator representation; if, e.g., Δ is of positive type, this means

$$\mathcal{L}_{\Delta}(\mathcal{A}) = \left\{ \begin{pmatrix} x \\ K_1^{\Delta} x \end{pmatrix} : x \in \mathcal{H}_1^{\Delta} \right\}.$$

We describe a defect subspace of the domain \mathcal{H}_1^{Δ} of the angular operator in terms of the Schur complement of \mathcal{A} .