DIFFERENT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH A HIGH ORDER SINGULAR PERTURBATION

YU. SHONDIN

In this lecture we report on joint work with A.Dijksma and P.Kurasov. Let $\mathcal{H}, \langle \cdot, \cdot \rangle$ be a Hilbert space, L be a positive self-adjoint operator in \mathcal{H} and φ be an element of the space $\mathcal{H}_{-n} \setminus \mathcal{H}_{-n+1}, n \geq 3$. Here \mathcal{H}_m 's are the Hilbert scale spaces with the inner products $\langle (L+1)^m \cdot, \cdot \rangle$. Also we choose n-1 positive real points $a_1, a_2, \ldots, a_{n-1}$ and associate with them the polynomials $b_0(z) = 1$ and $b_j(z) = (z+a_1)(z+a_2)\cdots(z+a_j), j = 1, \ldots, n-1$.

With the L and φ we associate two suitable inner product spaces and two maximal operators whose domains contain the the elements $\frac{1}{L-z}\varphi$, $z \in \rho(L)$. This gives rise to two different kinds of self-adjoint realizations (two models A and B) of the formal singular perturbation $L_{\theta} = L + \operatorname{tg} \theta \langle \cdot, \varphi \rangle \varphi$ and we explain what the models have in common and where they differ. More precisely the B-model describes minimal realization of the generalized Nevanlinna function

$$Q_B(z) = b_{n-1}(z) \langle \frac{1}{L-z}\varphi, \frac{1}{b_{n-1}(L)}\varphi \rangle + p_{n-2}(z),$$

where $p_{n-2}(z) = c_0 + c_1 b_1(z) + \cdots + c_{n-2} b_{n-2}(z)$ is a polynomial with real coefficients. The function $Q_B(z) \in N_{\kappa}$ with $\kappa = \left[\frac{n-1}{2}\right]$ and admits representation

$$Q_B(z) = b_{n-2}(z)Q_A(z), \ Q_A(z) = (z + a_{n-1})\langle \frac{1}{L-z}\varphi, \frac{1}{b_{n-1}(L)}\varphi \rangle + \frac{p_{n-2}(z)}{b_{n-2}(z)}$$

The function $Q_A(z)$ belongs to the class $N_{\kappa'}$ with $0 \leq \kappa' \leq n-2$ negative squares and the A-model describes a minimal realization of this function. The generalized Nevanlinna function $Q_A(Q_B)$ is a Qfunction of a symmetric operator $A_{\min}(B_{\min})$ and a self-adjoint extension $A_0(B_0)$ in a Pontryagin space $\mathcal{H}_A(\mathcal{H}_B)$ correspondingly. The one-parameter family of self-adjoint extensions of $A_{\min}(B_{\min})$ is interpreted as the family of realizations $A_{\theta}(B_{\theta})$ of L_{θ} in the A(B)-model correspondingly.

YU. SHONDIN

Considering the realizations A_{θ} and B_{θ} as suitable restrictions of the corresponding maximal operators A_{\min}^* and B_{\min}^* we get different boundary value problems associated with L_{θ} . From their comparison we obtain a complete correspondence between models A and B.