On the uniqueness of an integro-polynomial representation for a definitizable trigonometric moment problem

Vladimir Strauss

Let us suppose that a number sequence $\{c_k\}_{-\infty}^{\infty}$ is such that there exists a difference operator mapping this sequence to a sequence that generates the solvable trigonometric moment problem. The sequence $\{c_k\}_{-\infty}^{\infty}$ can be presented in the form

$$c_k = \int_0^{2\pi} \left(e^{ikt} - \mathcal{P}^{(k)}(e^{it}) \right) d\rho(t) + \sum_{j=0}^l a_j^{(k)} c_j \,,$$

where $\mathcal{P}^{(k)}(z) = \sum_{j=0}^{l} a_j^{(k)} z^j$ is, for each k, the interpolating polynomial of z^k at some fixed multi-set of points. The integral in the representation is treated as improper Stieltjes integral.

In our talk we discuss the uniqueness problem of this representation, concerning $\rho(t)$ and the interpolation multi-set. A detail description for this circle of problems can be find in the report [1].

References

[1] NAVARRO L, STRAUSS V (2002) On a trigonometric moment problem for indefinite metric spaces. Research Paper No.826, Department of Mathematics and Statistics, University of Calgary, Canada