Limit-Point/Limit-Circle Classification for Sturm-Liouville Problems whose Coefficients Depend Rationally on the Eigenvalue Parameter

H. de Snoo joint work with S. Hassi and M. Möller

Weyl's limit-point/limit-circle alternative states that for every non-real λ the set of solutions of $(-DpD+q)y=\lambda y$ (the function q is real and measurable, and D denotes differentiation with respect to the single variable) belonging to $L^2(0,\infty)$ is a vector space of dimension 1 or 2, and secondly that either for each $\lambda \in \mathbb{C}$ this solution space has dimension 2 or for each $\lambda \in \mathbb{C}$ its dimension is at most 1. In this talk similar statements are considered for the 2×2 system

$$A_0 = \begin{pmatrix} -DpD + q & -Dc + a \\ cD + a & r \end{pmatrix}$$
 (0.1)

of formal differential operators, where the coefficient functions $p,q,c,r,a:(0,\infty)\to\mathbb{R}$ are measurable functions with $p\neq 0$ a. e.