On the Eigenvalues of Self-Adjoint Extensions with Exit

Annemarie Luger joint work with Jussi Behrndt

Let A be a symmetric operator in a Krein space \mathcal{K} and suppose that it has a self-adjoint extension A_0 in \mathcal{K} that locally in some domain Ω it behaves like a self-adjoint relation in a Pontryagin space (that is, A is of type π_+ over Ω). Then we are interested in the eigenvalues of self-adjoint extensions \widetilde{A} in a larger space $\widetilde{K} \supset \mathcal{K}$, under the assumption that \widetilde{A} also is of type π_+ over Ω .

We are giving an analytic characterization in terms of the functions $m(\lambda)$, which is the Q- (or Weyl) function of the pair (A, A_0) , and the parameter $\tau(\lambda)$ in

$$P_{\mathcal{K}}(\widetilde{A} - \lambda)^{-1}|_{\mathcal{K}} = (A_0 - \lambda)^{-1} - \gamma(\lambda)(m(\lambda) + \tau(\lambda))^{-1}\gamma(\overline{\lambda})^+,$$

where $\gamma(\lambda)$ denotes the corresponding γ -field.

In particular, it follows that \widetilde{A} in general is not a minimal representing relation for the function $-\frac{1}{m(\lambda)+\tau(\lambda)}$ as it is in the case of canonical extensions, where τ is a constant. Furthermore, we give a necessary condition on the spectral measure of A_0 for the existence of embedded eigenvalues for some extension \widetilde{A} .