A Completeness Theorem for a Non-Standard Two-Parameter Eigenvalue Problem

Manfred Möller
joint work with Melvin Faierman and Bruce Watson

We consider two simultaneous Sturm-Liouville systems involving two spectral parameters,

$$
\begin{align*}
& \lambda y^{\prime \prime}(s)+\mu a(s) y(s)+b(s) y(s)=0, \quad 0 \leq s \leq 1, \quad '=d / d s \tag{1}\\
& y(0)=y(1)=0, \tag{2}\\
& -\lambda c(t) z(t)+\mu z^{\prime \prime}(t)+d(t) z(t)=0, \quad 0 \leq t \leq 1, \quad '=d / d t, \tag{3}\\
& z(0)=z(1)=0 \tag{4}
\end{align*}
$$

where a, b, c, and d are real-valued and continuous, and in addition, a and c are positive, and at least one of the functions b and d has no zeros, and if $b \neq 0($ resp. $d \neq 0)$, then b (resp. d) is not a scalar multiple of a (resp. c).

Eliminating the eigenvalue parameter μ, the boundary problem

$$
\begin{align*}
\lambda\left(D_{1}^{2} D_{2}^{2} u+a c u\right)+\left(b D_{2}^{2} u-a d u\right) & =0 \quad \text { in } \quad \Omega, \tag{5}\\
u & =0 \quad \text { on } \quad \Gamma, \tag{6}
\end{align*}
$$

arises, where $D_{1}=\partial / \partial s, D_{2}=\partial / \partial t, \Omega=(0,1) \times(0,1)$, and $\Gamma=\partial \Omega$.
Since the differential equation (5) is not elliptic, the usual methods used in standard multiparameter spectral theory to obtain the required regularity results for solutions of (5-6) no longer apply. However, we are able to show that the domain of the self-adjoint operator associated with (5-6) contains the Sobolev space $H^{2}(\Omega)$, which enables us to show that the eigenvectors of (1-4) are complete in $L^{2}(\Omega)$ in case $b=0$ or $d=0$.

In case $b \neq 0$, the operator A has essential spectrum in $\mathbb{R} \backslash\{0\}$, and the completeness of the eigenvectors is still an open problem.

