Around Models of $\mathcal{N}_{\kappa}^{\infty}$ -Functions

Yu. Shondin joint work with A. Dijksma and A. Luger

Each generalized Nevanlinna functions $N(z) \in \mathcal{N}_{\kappa}$ for which $z = \infty$ is the only pole (or generalized pole) of non-positive type is characterized by the *irreducible* representation

$$N(z) = (z - z_0)^m (z - z_0^*)^m (N_0(z) + q(z)) + p(z),$$
(1)

where z_0 belongs to the domain of holomorphy of N, $m \in \mathbb{N}_0$, $N_0(z) \in \mathcal{N}_0$, q(z) and p(z) are real polynomials, deg $p \leq 2m - 1$. It can be shown that N(z) in (1) admits also another representation

$$N(z) = (z - z_0)^{\kappa} (z - z_0^*)^{\kappa} N_0^r(z) + r(z), \tag{2}$$

with some $N_0^r(z) \in \mathcal{N}_0$ and a real polynomial r(z) of degree $\leq 2\kappa - 1$. In general the representation (2) is reducible. Earlier we have described minimal representations of N(z) and $-N(z)^{-1}$ in the reproducing kernel space $\mathcal{L}(N_0) \oplus \mathcal{L}(q) \oplus \mathcal{L}(M_p)$ associated with the factors N_0, q and $((z-z_0)^m, p)$ of the irreducible representation (1). Here we consider models of N(z) and $-N(z)^{-1}$ in the reproducing kernel space $\mathcal{L}(N_0^r) \oplus \mathcal{L}(M_r)$ associated with the factors N_0^r and $((z-z_0)^\kappa, r)$ of the representation (2) and also a correspondence between the models. The meaning of representation (2) and associated models for an approximation problem will be discussed.