## Absolutely p-Summing Operators in Krein Spaces

## G. Wanjala

Let  $\mathcal{H}$  and  $\mathcal{K}$  be Krein spaces and  $1 \leq p < \infty$ . A linear operator  $u : \mathcal{H} \to \mathcal{K}$  is absolutely p-summing if there is a constant c > 0 such that for each positive integer m and any vectors  $x_1, \ldots, x_n$  in  $\mathcal{H}$  we have

$$\left(\sum_{i=1}^{m} \| ux_i \|^p\right)^{1/p} \le \sup \left\{ \left(\sum_{i=1}^{m} |\langle y, x_i \rangle|^p\right)^{1/p} : y \in \mathcal{H}, \| y \| \le 1 \right\}.$$

We show that a linear map  $u: \mathcal{H} \to \mathcal{K}$  is absolutely p-summing precisely when it takes weakly p-summable sequences in  $\mathcal{H}$  to strongly p-summable sequences in  $\mathcal{K}$ . We also show that the composition of a p-summing operator with any bounded linear operator is absolutely p-summing. We shall restrict our discussion to the case p=2.