Quadratic (weakly) hyperbolic matrix polynomials: Inverse spectral problems

T.Ya. Azizov

joint work with A. Dijksma, K.-H. Förster, and P. Jonas

The main result of the talk is the following theorem: Let n be an integer ≥ 2 and assume that the ordered set $\left\{\beta_{ \pm j}\right\}_{j=1}^{n-1} \in T_{2 n-2}$ block-interlaces the ordered set $\left\{\alpha_{ \pm j}\right\}_{j=1}^{n} \in T_{2 n}$. Then there exist $n \times n$ Jacobi matrices B and C such that
(i) the matrix polynomial $L(\lambda)=\lambda^{2}+\lambda B+C$ is weakly hyperbolic,
(ii) the ordered eigenvalues of L coincide with $\left\{\alpha_{ \pm j}\right\}_{j=1}^{n}$, and
(iii) the ordered eigenvalues of the compression $L_{\infty ; e_{n}}$ of L to $\left\{e_{n}\right\}^{\perp}$ with $e_{n}=\left(\begin{array}{llll}0 & \cdots & 0 & 1\end{array}\right)^{\top} \in \mathbb{C}^{n}$ coincide with $\left\{\beta_{ \pm j}\right\}_{j=1}^{n-1}$.

If, in addition,

$$
\begin{equation*}
\alpha_{1}-\alpha_{-1}>0, \tag{1}
\end{equation*}
$$

then L is hyperbolic.
The lecture is based on joint work with Aad Dijksma, Karl-Heinz Foerster, and Peter Jonas started in 2001, but just recently finished. In another lecture Aad Dijksma will discuss a direct spectral problem.

The research is supported partially by the RFBR grant 08-01-00566-a

