On linear fractional transformations associated with generalized J-inner matrix functions

V. Derkach
joint work with H. Dym

We study generalized J-inner matrix valued functions $W(\lambda)$ decomposed in the block form $W(\lambda)=\left(\begin{array}{cc}w_{11} & w_{12} \\ w_{21} & w_{22}\end{array}\right)$ conformally with $J=\left(\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right)$, which appear as resolvent matrices in various indefinite interpolation problems. Reproducing kernel indefinite inner product spaces associated with a generalized J-inner matrix valued function $W(\lambda)$ are studied and intensively used in the description of the range of the linear fractional transformation $T_{W}[\varepsilon]=\left(w_{11} \varepsilon+w_{12}\right)\left(w_{21} \varepsilon+w_{22}\right)^{-1}$ applied to the Schur class $S^{p \times q}$. For a subclass $\mathcal{U}_{\kappa}^{\circ}(J)$ of generalized J-inner matrix valued function W the notion of associated pair is introduced and factorization formulas for W are found. These results are used in order to describe the set of generalized Schur functions from $T_{W}\left[S^{p \times q}\right]$ with maximal negative signature.

