Completely bounded kernels

M. Dritschel

joint work with C. Todd and T. Bhattacharyya

Given a set X and two C^{*}-algebras \mathcal{A} and \mathcal{B} , a kernel k is defined as a function from $X \times X$ to $L(\mathcal{A}, \mathcal{B})$, the bounded linear maps from \mathcal{A} to \mathcal{B} . The kernel k is *positive* if for all finite sets $F = \{(x_i, a_i)\} \subset X \times \mathcal{A}$, the matrix

 $\left(k(x_i, x_j)[a_i a_j^*]\right)_{F \times F} \tag{*}$

is nonnegative. If the same is true whenever we replace $X \times \mathcal{A}$ by $X \times M_n(\mathcal{A})$ and k by $k \otimes 1_n$ for any $n \in \mathbb{N}$, then k is said to be *completely positive* (the two concepts coincide when $\mathcal{A} = \mathcal{B} = \mathbb{C}$). Completely positive kernels have several equivalent characterisations, including the existence of a so-called Kolmogorov decomposition. Constantinescu and Gheondea, generalising results of Laurent Schwarz, considered kernels k where the matrix in (*) is merely selfadjoint with $L(\mathcal{A}, \mathcal{B}) = B(\mathcal{H}), \mathcal{H}$ a Hilbert space, and found necessary and sufficient conditions for the decomposability of such kernels as the difference of (completely) positive kernels. A result of Haagerup implies that when \mathcal{A} and \mathcal{B} are von Neumann algebras such decompositions in terms of completely positive kernels will fail if \mathcal{B} is not injective.

In this talk we discuss decomposability of self adjoint kernels as differences of completely positive kernels when \mathcal{A} and \mathcal{B} are C^* -algebras, characterising decomposable kernels. We also discuss the case when the matrix in (*) is a only a completely bounded map, giving an analogue of the Wittstock decomposition for such kernels.