Inverse scattering on the line for Schrödinger operators with Miura potentials

R. Hryniv

joint work with Ch. Frayer, Ya. Mykytyuk and P. Perry

We study direct and inverse scattering problems for one-dimensional Schrödinger operators with highly singular Miura potentials $q \in H^{-1}(\mathbb{R})$, i.e., potentials of the form $q = u' + u^2$ for some $u \in L_2(\mathbb{R})$. Under some additional assumptions this Riccati representation is unique, and there is a well-defined reflection coefficient r that determines u uniquely. We show that the map $u \mapsto r$ is continuous with continuous inverse and obtain an explicit reconstruction formula. Among potentials included are, e.g., delta-functions, potentials of Marchenko–Faddeev class, and some highly oscillating unbounded potentials.