A max-min-principle for pairs of Hermitian matrices

M. Karow

Let $\lambda_{1}(H) \geq \lambda_{2}(H) \geq \ldots \geq \lambda_{n}(H)$ denote the eigenvalues of the Hermitian matrix $H \in \mathbb{F}^{n \times n}$ in decreasing order, $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$. Let $\mathcal{G}_{k}(\mathbb{F})$ denote the Grassmann manifold of k-dimensional subspaces of \mathbb{F}^{n}. The Courant-Fischer max-min-principle states that

$$
\lambda_{k}(H)=\max _{\mathcal{S} \in \mathcal{G}_{k}(\mathbb{F})} \min _{\substack{x \in \mathcal{S} \\\|x\|=1}} x^{*} H x .
$$

We show that the following formula holds for any pair of Hermitian matrices $H_{0}, H_{1} \in \mathbb{F}^{n \times n}$. Let $H_{t}=(1-t) H_{0}+t H_{1}$. Then

$$
\min _{t \in[0,1]} \lambda_{k}\left(H_{t}\right)=\max _{\mathcal{S} \in \mathcal{G}_{k}(\mathbb{F})}\left\{\min _{\substack{x \in \mathcal{S} \\\|x\|=1}} x^{*} H_{0} x, \min _{\substack{x \in \mathcal{S} \\ \\\|x\|=1}} x^{*} H_{1} x\right\} .
$$

This formula is a corollary of the following theorem.
Theorem: Suppose that to each $t \in[0,1]$ there exists a k-dimensional subspace \mathcal{S}_{t} on which the Hermitian form $x \mapsto x^{*} H_{t} x$ is positive definite. Then there exists a k-dimensional subspace \mathcal{S} on which all of these forms are simultaneously positive definite.

The proof of the theorem uses the canonical form of Hermitian matrix pairs under congruence transformations.

