On interconnection of conservative systems

M. Kurula

joint work with H. Zwart, J. Behrndt and A. van der Schaft

We show that a large class of conservative systems can be characterised by the fact that their system variables live on a Lagrangian subspace of a certain Kreĭn space \mathfrak{K} . Most relevant Lagrangian subspaces of \mathfrak{K} also arise from conservative linear systems.

Energy-preserving interconnection of two finite-dimensional conservative systems is a conservative system. However, in infinite dimensions conservativity is not always preserved under energy-preserving interconnection. We show that this interconnection problem for conservative systems leads to the following *abstract compression problem*:

Let \mathfrak{K}_r and \mathfrak{K}_d be Krein spaces with indefinite inner products $[\cdot, \cdot]_{\mathfrak{K}_r}$ and $[\cdot, \cdot]_{\mathfrak{K}_d}$, respectively. Let \mathfrak{K} be the Krein space $\begin{bmatrix} \mathfrak{K}_r \\ \mathfrak{K}_d \end{bmatrix}$ with inner product

$$\left[\left[\begin{array}{c} k_r \\ k_d \end{array} \right], \left[\begin{array}{c} k'_r \\ k'_d \end{array} \right] \right]_{\mathfrak{K}} = \left[k_r, k'_r \right]_{\mathfrak{K}_r} + \left[k_d, k'_d \right]_{\mathfrak{K}_d}.$$

Let V be a Lagrangian subspace of \mathfrak{K} and let $G \subset \mathfrak{K}_d$. The problem is to find necessary and sufficient conditions on V and G for the compression

$$V_r := \left\{ k_r \in \mathfrak{K}_r \mid \exists k_d \in G : \begin{bmatrix} k_r \\ k_d \end{bmatrix} \in V \right\}$$

to be a Lagrangian subspace of \Re_r .

The approach might depend on the particular properties of \mathfrak{K} and V. We provide a full abstract solution and some more practical partial solutions.