The Spectra of normal, equinormal and pseudonormal closed linear relations

J.-P. Labrousse

Let \mathcal{H} be a complex Hilbert space and let $LR(\mathcal{H})$ denote the set of all closed linear relations on \mathcal{H} (which includes all closed linear operators on \mathcal{H}).

Denote by Γ_1 the sphere in \mathbf{R}^3 described by the equation: $x^2 + y^2 + z^2 = 1$ and let Φ be the mapping of $\overline{\mathbf{C}}$ (the one point compactification of the complex plane) onto Γ_1 given by:

If
$$\lambda \in \mathbf{C}$$
, $\Phi(\lambda) = \{ \frac{2Re\{\lambda\}}{|\lambda|^2 + 1}, \frac{2Im\{\lambda\}}{|\lambda|^2 + 1}, \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \}$
 $\Phi(\infty) = \{0, 0, 1\}.$

 $\Phi(\lambda)$ is the intersection in \mathbf{R}^3 of Γ_1 with the straight line going from $\{0,0,1\}$ to the point $\{a,b,0\}$ where $\lambda=a+ib$.

Let $\Psi: E \mapsto \Psi(E) = \{u_0, u_1, u_2, u_3\}$ denote a certain linear mapping of $LR(\mathcal{H})$ into the set of the 4-tuples of self-ajoint operators in $L(\mathcal{H})$ (the precise definition of Ψ is too long to include in the abstract).

The following results are proved:

- If $E \in LR(\mathcal{H})$ and $\Psi(E) = \{u_0, u_1, u_2, u_3\}$ then E is normal if and only if $u_0 = 0$ and the other three components of $\Psi(E)$ commute
- If $E \in LR(\mathcal{H})$ is normal and $\sigma(E)$ denotes its spectrum then $\Phi(\sigma(E))$ is the joint spectrum of $\Psi(E)$

Finally using Ψ and Φ two cathegories of closed linear relations are defined: the equinormal, which are normal with an additional property, and the pseudonormal, which generalize the normal but retain some good properties of the normal.