Schur algorithm for generalized Caratheodory functions

E. Lopushanskaya

We define the Schur algorithm for generalized Caratheodory functions and study its properties.

The function f(z) is called a *generalized Caratheodory function with* \varkappa *negative squares* if it is meromorphic in the open unit disc \mathbb{D} and the kernel

$$K_f(z, w) = \frac{f(z) + f(w)^*}{1 - zw^*}$$

has \varkappa negative squares in the domain of holomorphy of f(z) in \mathbb{D} . We denote this class of functions which are holomorphic at $z_1 \in \mathbb{D}$ by $\mathbf{C}^{z_1}_{\varkappa}$.

Theorem. Let $f \in \mathbf{C}^{z_1}_{\varkappa}$ has the Taylor expansion

$$f(z) = \sum_{i=0}^{\infty} c_i (z - z_1)^i$$

and let $f_1(z)$ be the Schur transformation of f(z). Then $f_1 \in \mathbf{C}^{z_1}_{\varkappa_1}$, where

if $\operatorname{Re} c_0 \neq 0$ and $c_0 + c_0^* > 0$, then $\varkappa_1 = \varkappa$

if $\operatorname{Re} c_0 \neq 0$ and $c_0 + c_0^* < 0$, then $\varkappa_1 = \varkappa - 1$

if $\operatorname{Re} c_0 = 0$, then $\varkappa_1 = \varkappa - k$, where $k \ge 1$ is the smallest integer such that $c_k \ne 0$.

The research is supported by the Russian Foundation for Basic Research, grant RFBR 08-01-00566-a