Eigenvalues in spectral gaps of J-selfadjoint operators and indefinite Sturm-Liouville operators

R. Möws joint work with J. Behrndt and C. Trunk

Consider two *J*-selfadjoint operators *A* and *B* with $\rho(A) \cap \rho(B) \neq \emptyset$, which are a one-dimensional perturbation in the resolvent sense of each other, i.e.

$$\dim \text{ran}((A - \lambda)^{-1} - (B - \lambda)^{-1}) = 1$$

for $\lambda \in \rho(A) \cap \rho(B)$.

Assume that B has κ negative squares and there exists some inverval $I \subset \rho(B) \cap \mathbb{R}$. We show that $\sigma(A) \cap I$ consists only of at most finitely many eigenvalues. Furthermore, we give an upper bound on the number of eigenvalues of A in I depending only on κ .

This result can be applied to a J-selfadjoint operator A associated to the singular indefinite Sturm-Liouville expression

$$\operatorname{sgn}(-f''+qf),$$

defined on \mathbb{R} , where $q \in L^1_{loc}(\mathbb{R})$. Assume that the limits $q_{\infty} = \lim_{x \to \infty} q(x)$ and $q_{-\infty} = \lim_{x \to -\infty} q(x)$ exist and fulfill $-q_{-\infty} < q_{\infty}$. Then $(-q_{-\infty}, q_{\infty})$ is a gap in the essential spectrum of A. We will give an estimate for the number of eigenvalues of A in $(-q_{-\infty}, q_{\infty})$.