Interpolation of Sobolev spaces and indefinite elliptic eigenvalue problems

S.G. Pyatkov

Let Ω be a bounded domain with a Lipschitz boundary Γ and let the symbol $W_p^m(\Omega)$ stand for the Sobolev space. By $\overset{\circ}{W}_p^m(\Omega)$ we mean the closure of the class $C_0^{\infty}(\Omega)$ in the norm of $W_p^m(\Omega)$. The main our results are connected with the property:

$$\exists s \in (0,1): \quad (W_p^m(\Omega), L_{p,g}(\Omega))_{1-s,p} = (\overset{\circ}{W}_p^m(\Omega), L_{p,g}(\Omega))_{1-s,p}.$$
(1)

By definition of a Lipschitz domain, for any $x_0 \in \Gamma$ there exists a neighborhood U about x_0 and a local coordinate system y obtained by rotation and translation of the origin from the initial one in which

$$U \cap \Omega = \{ y \in \mathbb{R}^n : y' \in B_r, \, \omega(y') < y_n < \omega(y') + \delta \},\$$
$$y' = (y_1, y_2, \dots, y_{n-1}), \ B_r = \{ y' : |y'| < r \},\$$

where the function ω meets the Lipschitz condition in B_r . Given $y \in U \cap \Omega$, put $K_y(a) = \{\eta \in \Omega : |\eta' - y'| < a(y_n - \eta_n)\}, a > 0$. Our conditions on the weight g are connected with some integral inequalities. The simplest of them is the following analog of the A_1 -condition.

(A) There exist a finite covering U_i (i = 1, 2, ..., N) of Γ (the domains U_i possess the properties from the definition of a Lipschitz domain) and the corresponding local coordinate systems such that for some a > 0, c > 0 and almost all $y \in U_i \cap \Omega$ (i = 1, 2, ..., N)

$$\int_{K_y(a)\cap U_i} g(\eta) \, d\eta \le c\mu(K_y(a))g(y)$$

(here the nonnegative function g(y) is written in the local coordinate system y). We have the following theorem.

Theorem. Under the condition (A) (1) holds.

We also present applications to the elliptic eigenvalue problems with indefinite weight function of the form

$$Lu = \lambda Bu \quad (x \in G \subset \mathbb{R}^n), \quad B_j u|_{\Gamma} = 0 \quad (j = \overline{1, m}), \tag{2}$$

where L is an elliptic differential operator of order 2m defined in a domain $G \subset \mathbb{R}^n$ with boundary Γ , the B_j 's are differential operators defined on Γ , and Bu = g(x)u with g(x) a measurable function changing a sign in G. We assume that there exist open subsets G^+ and G^- of G such that $\mu(\overline{G^{\pm}} \setminus G^{\pm}) = 0$ (μ is the Lebesgue measure), g(x) > 0 almost everywhere in G^+ , g(x) < 0 almost everywhere in G^- , and g(x) = 0 almost everywhere in $G^0 = G \setminus (\overline{G^+} \cup \overline{G^-})$. Let the symbol $L_{2,g}(G \setminus G^0)$ stand for the space of functions u(x) measurable in $G^+ \cup G^-$ and such that $u|g|^{1/2} \in L_2(G \setminus G^0)$. We study the Riesz basis property of eigenfunctions and associated functions of problem (2) in the weighted space $L_{2,g}(G \setminus G^0)$.