Properties of nonlinear maps associated with inverse Sturm-Liouville problems

A.M. Savchuk

joint work with A.A. Shkalikov

Denote by L_D the operator generated by the Sturm-Liouville differential expression Ly = -y'' + q(x)y and the Dirichlet boundary conditions at the finite interval [0, 1]. We assume that q(x) belongs to the Sobolev space $W_2^{\theta}[0, 1]$ with some $\theta \ge -1$. The classical inverse problem for this operator is formulated as follows: to recover the potential q(x) by the given spectral function of L_D which is defined by the spectrum $\{\lambda_k\}_1^{\infty}$ and the so-called norming constants $\{\alpha_k\}_1^{\infty}$. These two sequences are called the spectral data of L_D .

For given $\theta \ge -1$ we construct special Hilbert space (denoted by \hat{l}_2^{θ}) where the spectral data are placed in when the potential q runs through the Sobolev space $W_2^{\theta}[0, 1]$. Then we study the maps $F : q \to \eta = \{\lambda_k, \alpha_k\}_1^{\infty}$ acting from W_2^{θ} to \hat{l}_2^{θ} and show that for any $\theta > -1$ the map F is is weakly nonlinear, i.e. a compact perturbation of a linear map.

The main result (which is new in classical case, too) roughly can be formulated as follows: if η and $\tilde{\eta}$ are the vectors characterizing the spectral data of the potentials q and \tilde{q} , respectively, then the difference $q - \tilde{q}$ in the norm of W_2^{θ} can be uniformly estimated through the difference $\eta - \tilde{\eta}$ in the norm \hat{l}_2^{θ} .