p-Adic Schrödinger-type operator with point interactions

S. Torba

joint work with S. Albeverio and S. Kuzhel

The function calculus of functions acting on the field \mathbb{Q}_p of *p*-adic numbers with values in \mathbb{C} is considered. There are analogues of integral, scalar product, L_2 -space and Fourier transform in this calculus, but no derivative. So an operator of fractional differentiation D^{α} of order $\alpha > 0$ plays a corresponding role. *p*-adic Schrödinger-type operators with potentials $V(x) : \mathbb{Q}_p \to \mathbb{C}$ are defined as $D^{\alpha} + V(x)$. In this talk, finite rank point perturbations are considered. General expression of such perturbation is $V_Y = \sum_{i,j=1}^n b_{ij} \langle \delta_{x_j}, \cdot \rangle \delta_{x_i}$, where δ_x is the Dirac delta function and $\{x_i\}_{i=1}^n$ are some *p*-adic points. Operator realizations of $D^{\alpha} + V_Y$ in $L_2(\mathbb{Q}_p)$ are described. Such problem is well-posed for $\alpha > 1/2$ and the singular perturbation V_Y is form-bounded for $\alpha > 1$. Spectral properties of operator realizations are studied, and the corresponding Krein's resolvent formula is given.

Let η be an invertible bounded self-adjoint operator in $L_2(\mathbb{Q}_p)$. An operator A is called η -self-adjoint in $L_2(\mathbb{Q}_p)$ if $A^* = \eta N \eta^{-1}$. η -self-adjoint operator realizations of $D^{\alpha} + V_Y$ in $L_2(\mathbb{Q}_p)$ for $\alpha > 1$ are described, and each realization is given in the form of some boundary valued space.

Each η -self-adjoint operator A is self-adjoint in a Krein space $(L_2(\mathbb{Q}_p), [\cdot, \cdot])$ with indefinite metric $[f, g] = (\eta f, g)$. To overcome difficulties of dealing with the indefinite metric, the hidden symmetry of operator A that is represented by the linear operator C is considered. Remind that an η -self-adjoint operator A has the property of C-symmetry if there exists a bounded linear operator C in $L_2(\mathbb{Q}_p)$, such that (i) $C^2 = I$; (ii) $\eta C > 0$; (iii) AC = CA. It is proven that if A_B is the η -self-adjoint operator realization of $D^{\alpha} + V_Y$, then the following statements are equivalent: (i) A_B possesses the property of C-summetry; (ii) the spectrum $\sigma(A_B)$ is real and there exists a Rietz basis of $L_2(\mathbb{Q}_p)$ composed of eigenfunctions of A_B .