Non-negative perturbations of non-negative selfadjoint operators

Vadim Adamyan

Department of Theoretical Physics
Odessa National University

Berlin, December 14 -17, 2006
We consider

- Laplace operators $-\Delta$ in $L^2(R_3)$ and $L^2(R_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_0(R_i \setminus \{0\});$
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L^2(R_i)$, $i = 3, 2.$
We consider

- Laplace operators $-\Delta$ in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_2(\mathbb{R}_i \setminus \{0\})$;
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$, $i = 3, 2$.
We consider

- Laplace operators $-\Delta$ in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_2(\mathbb{R}_i \setminus \{0\})$;
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$, $i = 3, 2$.
We consider

- Laplace operators $-\Delta$ in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_2(\mathbb{R}_i \setminus \{0\})$;
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$, $i = 3, 2$.

Vadim Adamyan
Non-negative perturbations...
We consider

- Laplace operators $-\Delta$ in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_2(\mathbb{R}_i \setminus \{0\})$;
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$, $i = 3, 2$.
We consider
- Laplace operators $-\Delta$ in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_2(\mathbb{R}_i \setminus \{0\})$;
- self-adjoint extensions $-\Delta_\alpha$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$, $i = 3, 2$.
Problem motivation and definition

Domains of $-\Delta_\alpha$:

\[D^{(3)}_\alpha := \left\{ f : f \in H^2_2(R^3), \lim_{|x| \downarrow 0} \left[\frac{d}{d|x|} (|x| f(x)) - \alpha |x| f(x) \right] = 0 \right\}, \]

\[D^{(2)}_\alpha := \left\{ f : f \in H^2_2(R^2), \lim_{|x| \downarrow 0} \left[\left(\frac{2\pi \alpha}{\ln |x|} + 1 \right) f(x) - \lim_{|x'| \downarrow 0} \frac{\ln |x|}{\ln |x'|} f(x') \right] = 0. \right\} \]
Domains of $-\Delta_\alpha$:

$$D_{\alpha}^{(3)} := \left\{ f : f \in H^2_2(\mathbb{R}^3), \lim_{|x| \downarrow 0} \left[\frac{d}{d|x|} (|x|f(x)) - \alpha |x|f(x) \right] = 0 \right\},$$

$$D_{\alpha}^{(2)} := \left\{ f : f \in H^2_2(\mathbb{R}^2), \lim_{|x| \downarrow 0} \left[\left(\frac{2\pi \alpha}{\ln|x|} + 1 \right) f(x) - \lim_{|x'| \downarrow 0} \frac{\ln|x|}{\ln|x'|} f(x') \right] = 0 \right\}.$$
Domains of $-\Delta_\alpha$:

$$D^{(3)}_\alpha := \left\{ f : f \in H^2_2(\mathbb{R}^3), \lim_{|x| \downarrow 0} \left[\frac{d}{d|x|} (|x| f(x)) - \alpha |x| f(x) \right] = 0 \right\},$$

$$D^{(2)}_\alpha := \left\{ f : f \in H^2_2(\mathbb{R}^2), \lim_{|x| \downarrow 0} \left[\left(\frac{2\pi\alpha}{\ln |x|} + 1 \right) f(x) - \lim_{|x'| \downarrow 0} \frac{\ln |x|}{\ln |x'|} f(x') \right] = 0 \right\}.$$
Problem motivation and definition

Resolvent kernels (Green functions):

\[
G_{\alpha,Z}^{(3)}(x, x') = \begin{cases}
G^0_Z(x, x') + \frac{1}{\alpha - i \sqrt{z}/4\pi} G^0_Z(x, 0) G^0_Z(0, x') \\
G^0_Z(x, x') = \frac{\exp i \sqrt{z}|x - x'|}{4\pi |x - x'|}.
\end{cases}
\]

\[
G_{\alpha,Z}^{(2)}(x, x') = \begin{cases}
G^0_Z(x, x') + \frac{2\pi}{2\pi \alpha - \psi(1) + \ln \left(\frac{\sqrt{z}}{2i} \right)} G^0_Z(x, 0) G^0_Z(0, x') \\
G^0_Z(x, x') = \left(\frac{i}{4} \right) H_0^{(1)}(i \sqrt{z}|x - x'|).
\end{cases}
\]

Vadim Adamyan Non-negative perturbations . . .
Resolvent kernels (Green functions):

\[
G_{\alpha,z}^{(3)}(x, x') = \begin{cases}
G_{z}^{(0)}(x, x') + \frac{1}{\alpha - i\sqrt{z}/4\pi} G_{z}^{(0)}(x, 0) G_{z}^{(0)}(0, x'), \\
G_{z}^{(0)}(x, x') = \frac{\exp i\sqrt{z}|x-x'|}{4\pi|x-x'|}.
\end{cases}
\]

\[
G_{\alpha,z}^{(2)}(x, x') = \begin{cases}
G_{z}^{(0)}(x, x') + \frac{2\pi}{2\pi\alpha - \psi(1) + \ln \left(\frac{\sqrt{z}}{2i} \right)} G_{z}^{(0)}(x, 0) G_{z}^{(0)}(0, x'), \\
G_{z}^{(0)}(x, x') = (\frac{i}{4}) H_{0}^{(1)}(i\sqrt{z}|x-x'|).
\end{cases}
\]
Resolvent kernels (Green functions):

\[
G^{(3)}_{\alpha, z}(x, x') = \begin{cases}
G^{(0)}_z(x, x') + \frac{1}{\alpha - i\sqrt{z}/4\pi} G^{(0)}_z(x, 0) G^{(0)}_z(0, x') , \\
G^{(0)}_z(x, x') = \frac{\exp i\sqrt{z}|x-x'|}{4\pi|x-x'|} .
\end{cases}
\]

\[
G^{(2)}_{\alpha, z}(x, x') = \begin{cases}
G^{(0)}_z(x, x') + \frac{2\pi}{2\pi\alpha - \psi(1) + \ln \left(\frac{\sqrt{z}}{2i} \right)} G^{(0)}_z(x, 0) G^{(0)}_z(0, x') , \\
G^{(0)}_z(x, x') = \left(\frac{i}{4} \right) H_0^{(1)} \left(i\sqrt{z}|x-x'| \right) .
\end{cases}
\]
All singular perturbations $-\Delta_\alpha$ of the Laplace operator in two dimensions have one negative eigenvalue or the standardly defined Laplace operator $-\Delta$ is the unique non-negative self-adjoint extension in $L_2(\mathbb{R}^2)$ of the symmetric operator $-\Delta^0$.
Why in some cases the Friedrichs extension is the unique non-negative extension of given non-negative symmetric operator?
Problem motivation and definition: Question

Question

Why in some cases the Friedrichs extension is the unique non-negative extension of given non-negative symmetric operator?
Let $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}

- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$M := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H},$$

$$N := \mathcal{H} \ominus M.$$

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).
$A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}

$A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$\mathcal{M} := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H},$$
$$\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).
\(A \geq 0 \) - self-adjoint operator in the Hilbert space \(\mathcal{H} \)

\(A^{(0)} \) be a densely defined closed restriction of \(A \) onto \(\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A) \) of \(A \).

Put
\[
\mathcal{M} := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H}, \\
\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.
\]

We call all self-adjoint extensions of \(A^{(0)} \) in \(\mathcal{H} \) other than \(A \) singular perturbations of \(A \) (associated with \(A_0 \)).
- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$\mathcal{M} := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H},$$

$$\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).
\begin{itemize}
 \item $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
 \item $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.
\end{itemize}

Put

\[
\mathcal{M} := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H}, \\
\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.
\]

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).
- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$M := (I + A^{(0)})\mathcal{D}(A^{(0)}) \not= \mathcal{H},$$
$$N := \mathcal{H} \ominus M.$$

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).
• $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}

• $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$\mathcal{M} := (I + A^{(0)})\mathcal{D}(A^{(0)}) \neq \mathcal{H},$$

$$\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoint extensions of $A^{(0)}$ in \mathcal{H} other than A **singular perturbations** of A (associated with A_0).
Let us consider $K_0 : \mathcal{M} \to \mathcal{H}$:

$$\begin{cases}
 f = (I + A^{(0)}) x, \\
 K_0 f = A^{(0)} x, \ x \in \mathcal{D}(A^{(0)}).
\end{cases}$$

A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H}, $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \in \sigma(K_1)$.

A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which $= 1$, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0.
Let us consider $K_0 : \mathcal{M} \to \mathcal{H}$:

\[
\begin{cases}
 f = (I + A^{(0)}) x, \\
 K_0 f = A^{(0)} x, \quad x \in \mathcal{D}(A^{(0)}).
\end{cases}
\]

A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H}, $K_1 f = K_0 f$, $f \in \mathcal{M}, 1 \in \sigma(K_1)$.

A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which $= 1$, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0.

Vadim Adamyan
Non-negative perturbations . . .
Let us consider \(K_0 : \mathcal{M} \to \mathcal{H} : \)

\[
\begin{align*}
 f &= (I + A^{(0)}) x, \\
 K_0 f &= A^{(0)} x, \quad x \in \mathcal{D}(A^{(0)}).
\end{align*}
\]

\(A_1 \) is a non-negative self-adjoint extension of \(A_0 \) in \(\mathcal{H} \) iff \(K_1 := A_1 (A_1 + I)^{-1} \) is a non-negative contractive extension of \(K_0 \) from \(\mathcal{M} \) onto \(\mathcal{H} \), \(K_1 f = K_0 f \), \(f \in \mathcal{M} \), \(1 \in \sigma(K_1) \).

\(A_0 \) has unique non-negative self-adjoint extension in \(\mathcal{H} \) if and only if \(K_0 \) admits only one non-negative contractive extension onto the whole \(\mathcal{H} \), no eigenvalue of which \(= 1 \), that is \(K := A(I + A)^{-1} \).

The uniqueness of \(A \) as non-negative extension of \(A_0 \) is equivalent to uniqueness of \(K \) as non-negative contractive extension of \(K_0 \).
Let us consider $K_0 : \mathcal{M} \to \mathcal{H}$:

$$
\begin{align*}
 f &= (I + A^{(0)}) x, \\
 K_0 f &= A^{(0)} x, \quad x \in \mathcal{D}(A^{(0)}).
\end{align*}
$$

A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H}, $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \in \sigma(K_1)$.

A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which $= 1$, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0.
Notation

- \mathcal{G} - the set consisting of A and all its non-negative singular perturbations;
- \mathcal{C} denote the set of non-negative contractions obtained from \mathcal{G} by transformation $A_1 \to A_1 (A_1 + I)^{-1}$, $A_1 \in \mathcal{G}$;
- P_M the orthogonal projector onto \mathcal{M} in \mathcal{H};
- $P_N = I - P_M$.
Notation

- \mathcal{G} - the set consisting of A and all its non-negative singular perturbations;
- \mathcal{C} denote the set of non-negative contractions obtained from \mathcal{G} by transformation $A_1 \rightarrow A_1 (A_1 + I)^{-1}$, $A_1 \in \mathcal{G}$;
- P_M the orthogonal projector onto M in \mathcal{H};
- $P_N = I - P_M$.

Vadim Adamyan

Non-negative perturbations...
Notation

- **G** - the set consisting of A and all its non-negative singular perturbations;
- **C** denote the set of non-negative contractions obtained from **G** by transformation $A_1 \rightarrow A_1 \left(A_1 + I \right)^{-1}$, $A_1 \in \textbf{G}$;
- P_M the orthogonal projector onto \mathcal{M} in \mathcal{H};
- $P_N = I - P_M$.
Notation

- \(\mathbf{G} \) - the set consisting of \(A \) and all its non-negative singular perturbations;
- \(\mathbf{C} \) denote the set of non-negative contractions obtained from \(\mathbf{G} \) by transformation \(A_1 \rightarrow A_1 (A_1 + I)^{-1} \), \(A_1 \in \mathbf{G} \);
- \(P_M \) the orthogonal projector onto \(\mathcal{M} \) in \(\mathcal{H} \)
- \(P_N = I - P_M \).
Notation

- **G** - the set consisting of A and all its non-negative singular perturbations;
- **C** denote the set of non-negative contractions obtained from **G** by transformation $A_1 \rightarrow A_1 (A_1 + I)^{-1}$, $A_1 \in G$;
- P_M the orthogonal projector onto M in \mathcal{H}
- $P_N = I - P_M$.
With respect to the representation $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ each $K_X \in \mathcal{C}$ can be represented as

$$K_X = \begin{pmatrix} T & \Gamma^* \\ \Gamma & X \end{pmatrix}$$

Here

$$T = P_M K_0|_M,$$
$$\Gamma = P_M K_0|_M.$$

X is a non-negative contraction in \mathcal{N} distinguishing elements from \mathcal{C}.
Since each $K_X \in \mathbf{C}$ is non-negative and contractive then

$$T \geq 0; \quad I \geq T^2 + \Gamma^* \Gamma$$

$K_X \in \mathbf{C}$ is equivalent to

$$K_X + \varepsilon I \geq 0;$$

$$(1 + \varepsilon)I - K_X \geq 0 \quad \varepsilon > 0.$$
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I \\
\Gamma(T + \varepsilon)^{-1} I
\end{pmatrix}
\times
\begin{pmatrix}
T + \varepsilon \\
0
\end{pmatrix}
\begin{pmatrix}
0 \\
X + \varepsilon - \Gamma(T + \varepsilon)^{-1} \Gamma^*
\end{pmatrix}
\times
\begin{pmatrix}
I \\
0
\end{pmatrix}
\begin{pmatrix}
(T + \varepsilon)^{-1} \Gamma^* \\
I
\end{pmatrix} \geq 0
\]
By the Schur -Frobenius factorization formula:

\[
\begin{pmatrix}
I \\
\Gamma(T + \varepsilon)^{-1} & I
\end{pmatrix} \times
\begin{pmatrix}
T + \varepsilon & 0 \\
0 & X + \varepsilon - \Gamma(T + \varepsilon)^{-1}\Gamma^*
\end{pmatrix} \times
\begin{pmatrix}
I \\
0 & (T + \varepsilon)^{-1}\Gamma^*
\end{pmatrix} \geq 0
\]
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I \\
\Gamma(T + \varepsilon)^{-1} & I
\end{pmatrix}
\times
\begin{pmatrix}
T + \varepsilon \\
0 & X + \varepsilon - \Gamma(T + \varepsilon)^{-1}\Gamma^*\end{pmatrix}
\times
\begin{pmatrix}
I \\
0 & (T + \varepsilon)^{-1}\Gamma^*\end{pmatrix} \geq 0
\]
By the Schur -Frobenius factorization formula:

\[
\begin{pmatrix}
I & 0 \\
\Gamma(T + \varepsilon)^{-1} & I
\end{pmatrix}
\times
\begin{pmatrix}
T + \varepsilon & 0 \\
0 & X + \varepsilon - \Gamma(T + \varepsilon)^{-1}\Gamma^*
\end{pmatrix}
\times
\begin{pmatrix}
I & (T + \varepsilon)^{-1}\Gamma^* \\
0 & (T + \varepsilon)^{-1}\Gamma^*
\end{pmatrix} \geq 0
\]
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I & 0 \\
-\Gamma(I + \epsilon - T)^{-1} & I
\end{pmatrix} \times
\begin{pmatrix}
1 + \epsilon - T & 0 \\
0 & 1 + \epsilon - X - \Gamma(1 + \epsilon - T)^{-1}\Gamma^*
\end{pmatrix} \times
\begin{pmatrix}
I & -(1 + \epsilon - T)^{-1}\Gamma^* \\
0 & I
\end{pmatrix} \geq 0
\]
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I & 0 \\
-\Gamma(I + \varepsilon - T)^{-1} & I
\end{pmatrix}
\times
\begin{pmatrix}
1 + \varepsilon - T & 0 \\
0 & 1 + \varepsilon - X - \Gamma(1 + \varepsilon - T)^{-1}\Gamma^*
\end{pmatrix}
\times
\begin{pmatrix}
I & -(1 + \varepsilon - T)^{-1}\Gamma^* \\
0 & I
\end{pmatrix} \geq 0
\]
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I & 0 \\
-\Gamma(I + \varepsilon - T)^{-1} & I
\end{pmatrix}
\times
\begin{pmatrix}
1 + \varepsilon - T & 0 \\
0 & 1 + \varepsilon - X - \Gamma(1 + \varepsilon - T)^{-1}\Gamma^*
\end{pmatrix}
\times
\begin{pmatrix}
I & -(1 + \varepsilon - T)^{-1}\Gamma^* \\
0 & I
\end{pmatrix} \geq 0
\]
By the Schur-Frobenius factorization formula:

\[
\begin{pmatrix}
I & 0 \\
-\Gamma(I + \varepsilon - T)^{-1} & I
\end{pmatrix} \times
\begin{pmatrix}
1 + \varepsilon - T & 0 \\
0 & 1 + \varepsilon - X - \Gamma(1 + \varepsilon - T)^{-1}\Gamma^* \\
0 & -(1 + \varepsilon - T)^{-1}\Gamma^* \\
0 & I
\end{pmatrix} \geq 0
\]
Since $T \geq 0$ and $I - T \geq 0$ the above inequalities are reduced to
\[
\begin{cases}
X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1}\Gamma^* \geq 0, \\
(1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \geq 0, \quad \varepsilon > 0.
\end{cases}
\]

Setting
\[
Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1}\Gamma^*
\]
we conclude that $K_X \in C$ if and only if
\[
0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \right).
\]
Since $T \geq 0$ and $I - T \geq 0$ the above inequalities are reduced to
\[
\begin{align*}
X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1}\Gamma^* &\geq 0, \\
(1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* &\geq 0, \quad \varepsilon > 0.
\end{align*}
\]
Setting
\[
Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1}\Gamma^*
\]
we conclude that $K_X \in \mathbb{C}$ if and only if
\[
0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \right).
\]
Since \(T \geq 0 \) and \(I - T \geq 0 \) the above inequalities are reduced to
\[
\begin{align*}
\begin{cases}
X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1}\Gamma^* \geq 0, \\
(1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \geq 0, \quad \varepsilon > 0.
\end{cases}
\end{align*}
\]
Setting
\[
Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1}\Gamma^*
\]
we conclude that \(K_X \in C \) if and only if
\[
0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \right).
\]
Hence

\[
I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0
\]

is the criterium that there are no contractive non-negative extension of \(K_0 \) in \(\mathcal{H} \) other than \(K \).

To express this criterium in terms of given \(K \) and \(A \) we use the following proposition.
Hence

\[I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0 \]

is the criterium that there are no contractive non-negative extension of \(K_0 \) in \(\mathcal{H} \) other than \(K \).

To express this criterium in terms of given \(K \) and \(A \) we use the following proposition.
Hence

\[I - \lim_{\varepsilon \downarrow 0} \left(\Gamma (T + \varepsilon I)^{-1} \Gamma^* + \Gamma [(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0 \]

is the criterium that there are no contractive non-negative extension of \(K_0 \) in \(\mathcal{H} \) other than \(K \).

To express this criterium in terms of given \(K \) and \(A \) we use the following proposition.
Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$L = \begin{pmatrix} R & U \\ V & S \end{pmatrix},$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}.

If R is invertible operator in \mathcal{M}, then

$$\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_\mathcal{N} \Lambda^{-1} P_\mathcal{N} L^{-1},$$

$$\Lambda = P_\mathcal{N} L^{-1} |_\mathcal{N}.$$
Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$L = \begin{pmatrix} R & U \\ V & S \end{pmatrix},$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}.

If R is invertible operator in \mathcal{M}, then

$$\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_N \Lambda^{-1} P_N L^{-1},$$

$$\Lambda = P_N L^{-1} |_N.$$
Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$L = \begin{pmatrix} R & U \\ V & S \end{pmatrix},$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}.

If R is invertible operator in \mathcal{M}, then

$$\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1},$$

$$\Lambda = P_{\mathcal{N}} L^{-1} |_{\mathcal{N}}.$$
Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$
L = \begin{pmatrix} R & U \\ V & S \end{pmatrix},
$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}.

If R is invertible operator in \mathcal{M}, then

$$
\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_\mathcal{N} \Lambda^{-1} P_\mathcal{N} L^{-1},
$$

$$
\Lambda = P_\mathcal{N} L^{-1} |_\mathcal{N}.
$$
Set

\[\Lambda_{1,\varepsilon} = \mathcal{P}_\mathcal{N}(K + \varepsilon I)^{-1}|_{\mathcal{N}} \]
\[\Lambda_{2,\varepsilon} = \mathcal{P}_\mathcal{N}[(1 + \varepsilon)I - K]^{-1}|_{\mathcal{N}}. \]

Applying the above Proposition with \(L = K + \varepsilon I \) and \(R = T + \varepsilon I \),
\[R = T + \varepsilon I, \]
\[U = \Gamma^* = P_\mathcal{M}K|_{\mathcal{N}} = P_\mathcal{M}(K + \varepsilon I)|_{\mathcal{N}}, \]
\[V = \Gamma = \mathcal{P}_\mathcal{N}K|_{\mathcal{M}} = \mathcal{P}_\mathcal{N}(K + \varepsilon I)|_{\mathcal{M}}, \]
\[S = \mathcal{P}_\mathcal{N}K|_{\mathcal{N}} + \varepsilon I \]
yields
\[\Gamma(T + \varepsilon I)^{-1}\Gamma^* = \mathcal{P}_\mathcal{N}K|_{\mathcal{N}} + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}. \]
Set

\[\Lambda_{1,\varepsilon} = P_{\mathcal{N}}(K + \varepsilon I)^{-1}|_{\mathcal{N}} \]
\[\Lambda_{2,\varepsilon} = P_{\mathcal{N}}[(1 + \varepsilon)I - K]^{-1}|_{\mathcal{N}}. \]

Applying the above Proposition with \(L = K + \varepsilon I \) and

\[R = T + \varepsilon I, \]
\[U = \Gamma^* = P_{\mathcal{M}}K|_{\mathcal{N}} = P_{\mathcal{M}}[K + \varepsilon I]|_{\mathcal{N}}, \]
\[V = \Gamma = P_{\mathcal{N}}K|_{\mathcal{M}} = P_{\mathcal{N}}[K + \varepsilon I]|_{\mathcal{M}}, \]
\[S = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I \]

yields

\[\Gamma(T + \varepsilon I)^{-1}\Gamma^* = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}. \]
Set

\[\Lambda_{1,\varepsilon} = P_N(K + \varepsilon I)^{-1}|_N \]
\[\Lambda_{2,\varepsilon} = P_N[(1 + \varepsilon)I - K]^{-1}|_N. \]

Applying the above Proposition with \(L = K + \varepsilon I \) and \(R = T + \varepsilon I \),

\[U = \Gamma^* = P_M K|_N = P_M[K + \varepsilon I]|_N, \]
\[V = \Gamma = P_N K|_M = P_N[K + \varepsilon I]|_M, \]
\[S = P_N K|_N + \varepsilon I \]

yields

\[\Gamma(T + \varepsilon I)^{-1}\Gamma^* = P_N K|_N + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}. \]
In the same fashion we get

$$\Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* = P_N[I - K]|_N + \varepsilon I - \Lambda^{-1}_{2,\varepsilon}.$$

Hence

$$I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \right) = \lim_{\varepsilon \downarrow 0} \Lambda_{1,\varepsilon}^{-1} + \lim_{\varepsilon \downarrow 0} \Lambda_{2,\varepsilon}^{-1}.$$
In the same fashion we get

$$
\Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* = P_N[I - K]|_N + \varepsilon I - \Lambda_{2,\varepsilon}^{-1}.
$$

Hence

$$
\lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* \right) = \lim_{\varepsilon \downarrow 0} \Lambda_{1,\varepsilon}^{-1} + \lim_{\varepsilon \downarrow 0} \Lambda_{2,\varepsilon}^{-1}.
$$
Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = M \oplus N$, K_0 is the restriction of K onto the subspace $M (= M \oplus \{0\})$ and

$$G_1 = \lim_{\varepsilon \downarrow 0} (P_N[K + \varepsilon I]_N)^{-1}$$

$$G_2 = \lim_{\varepsilon \downarrow 0} (P_N[I - K + \varepsilon I]_N)^{-1}$$

Then the set \mathcal{C} of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$K_X = \begin{pmatrix} P_M K_M & P_M K_N \\ P_M K_N & X \end{pmatrix}, \quad (1)$$

where X runs the set of all non-negative contractions in N satisfying inequalities

$$P_N K_N - G_1 \leq X \leq P_N K_N + G_2. \quad (2)$$

In particular, K is the unique non-negative contractive extension of K_0 if and only if $G_1 = G_2 = 0$.
Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_1 = \lim_{\varepsilon \downarrow 0} (P_\mathcal{N}[K + \varepsilon I]|_\mathcal{N})^{-1}$$

$$G_2 = \lim_{\varepsilon \downarrow 0} (P_\mathcal{N}[I - K + \varepsilon I]|_\mathcal{N})^{-1}$$

Then the set \mathcal{C} of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$K_X = \begin{pmatrix} P_\mathcal{M} K|_\mathcal{M} & P_\mathcal{M} K|_\mathcal{N} \\ P_\mathcal{M} K|_\mathcal{N} & X \end{pmatrix},$$

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$P_\mathcal{N} K|_\mathcal{N} - G_1 \leq X \leq P_\mathcal{N} K|_\mathcal{N} + G_2.$$

In particular, K is the unique non-negative contractive extension of K_0 if and only if $G_1 = G_2 = 0$.
Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M} (= \mathcal{M} \oplus \{0\})$ and

$$
G_1 = \lim_{\varepsilon \downarrow 0} (P_N[K + \varepsilon I]|_N)^{-1}
$$

$$
G_2 = \lim_{\varepsilon \downarrow 0} (P_N[I - K + \varepsilon I]|_N)^{-1}
$$

Then the set \mathcal{C} of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$
K_X = \begin{pmatrix} P_MK|_M & P_MK|_N \\ P_MK|_N & X \end{pmatrix},
$$

(1)

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$
P_NK|_N - G_1 \leq X \leq P_NK|_N + G_2.
$$

(2)

In particular, K is the unique non-negative contractive extension of K_0 if and only if $G_1 = G_2 = 0.$
Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_1 = \lim_{\varepsilon \downarrow 0} (P_{\mathcal{N}}[K + \varepsilon I]|_{\mathcal{N}})^{-1}$$

$$G_2 = \lim_{\varepsilon \downarrow 0} (P_{\mathcal{N}}[I - K + \varepsilon I]|_{\mathcal{N}})^{-1}$$

Then the set C of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$K_X = \begin{pmatrix} P_{\mathcal{M}}K|_{\mathcal{M}} & P_{\mathcal{M}}K|_{\mathcal{N}} \\ P_{\mathcal{M}}K|_{\mathcal{N}} & X \end{pmatrix},$$ \hspace{1cm} (1)

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$P_{\mathcal{N}}K|_{\mathcal{N}} - G_1 \leq X \leq P_{\mathcal{N}}K|_{\mathcal{N}} + G_2.$$ \hspace{1cm} (2)

In particular, K is the unique non-negative contractive extension of K_0 if and only if $G_1 = G_2 = 0$.

Vadim Adamyan
Non-negative perturbations . . .
Remark.

The set of all non-negative singular perturbations of A contains the minimal perturbation A_μ with and the maximal perturbation A_M such that any non-negative perturbation A_1 satisfies inequalities $A_\mu \leq A_1 \leq A_M$. The corresponding values of parameters X in the above theorem are

$$X_\mu = I|_\mathcal{N} + P_{\mathcal{N}}[I + A]^{-1}|_\mathcal{N} - G_1$$

$$X_M = I|_\mathcal{N} + P_{\mathcal{N}}[I + A]^{-1}|_\mathcal{N} + G_2$$

If $G_1 = 0$ ($G_2 = 0$), then the minimal (maximal) perturbation coincides with A.

Vadim Adamyan
Non-negative perturbations...
Proposition.

The set of resolvents of all non-negative singular perturbations A_Y of A is described by the M.G. Krein formula

$$(A_Y - zI)^{-1} = (A - zI)^{-1} - (A + I)(A - zI)^{-1} P_{\mathcal{N}} Y \times \left[I + (1 + z)P_{\mathcal{N}}(A + I)(A - zI)^{-1} Y \right]^{-1} \times P_{\mathcal{N}}(A + I)(A - zI)^{-1},$$

where Y runs contractions in \mathcal{N} satisfying inequalities $-G_1 \leq Y \leq G_2$.
Let A denote the multiplication operator in $L_2(\mathbb{R}_n)$ by the continuous function $\varphi(k)$, $k^2 = k_1^2 + \ldots + k_n^2$, such that $\varphi(k) > 0$ almost everywhere and

$$
\int_0^\infty \frac{k^{n-1}}{(1 + \varphi(k))^2} \, dk < \infty.
$$

A is a non-negative self-adjoint operator,

$$
\mathcal{D}(A) = \left\{ f : \int_{\mathbb{R}_n} |1 + \varphi(k)|^2 |f(k)|^2 \, dk < \infty, \ f \in L_2(\mathbb{R}_n) \right\}.
$$
Let A denote the multiplication operator in $L_2(\mathbb{R}^n)$ by the continuous function $\varphi(k)$, $k^2 = k_1^2 + \ldots + k_n^2$, such that $\varphi(k) > 0$ almost everywhere and

$$\int_0^\infty \frac{k^{n-1}}{(1 + \varphi(k))^2} \, dk < \infty.$$

A is a non-negative self-adjoint operator,

$$D(A) = \left\{ f : \int_{\mathbb{R}^n} |1 + \varphi(k)|^2 |f(k)|^2 \, dk < \infty, \; f \in L_2(\mathbb{R}^n) \right\}.$$
Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbb{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbb{R}_n} f(k)\,dk.$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \hat{\delta}(f) = 0 \right\}.$$

The closure of $A_0 \neq A$ and

$$\mathcal{N} = (L_2(\mathbb{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \xi \in \mathbb{C} \right\}.$$
Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbb{R}_n)$:

$$
\hat{\delta}(f) = \int_{\mathbb{R}_n} f(k) dk.
$$

Note that $D(\hat{\delta}) \subset D(A)$.

Let us denote by A_0 the restriction of A onto linear set

$$
D(A_0) := \left\{ f : f \in D(A), \hat{\delta}(f) = 0 \right\}.
$$

The closure of $A_0 \neq A$ and

$$
N = (L_2(\mathbb{R}_n) \ominus (I + A)D_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \ \xi \in \mathbb{C} \right\}.
$$
Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbb{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbb{R}_n} f(k) dk.$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \hat{\delta}(f) = 0 \right\}.$$

The closure of $A_0 \neq A$ and

$$\mathcal{N} = (L_2(\mathbb{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \; \xi \in \mathbb{C} \right\}.$$
Let \(\hat{\delta} \) denote the unbounded linear functional in \(L_2(\mathbb{R}_n) \):

\[
\hat{\delta}(f) = \int_{\mathbb{R}_n} f(k) \, dk.
\]

Note that \(D(\hat{\delta}) \subset D(A) \).

Let us denote by \(A_0 \) the restriction of \(A \) onto linear set

\[
D(A_0) := \left\{ f : f \in D(A), \, \hat{\delta}(f) = 0 \right\}.
\]

The closure of \(A_0 \neq A \) and

\[
\mathcal{N} = (L_2(\mathbb{R}_n) \ominus (I + A)D_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \, \xi \in \mathbb{C} \right\}.
\]
Proposition.

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

\[\int_0^\infty \frac{k^{n-1}}{\varphi(k)(1 + \varphi(k))} \, dk = \infty \]

and

\[\int_0^\infty \frac{k^{n-1}}{(1 + \varphi(k))} \, dk = \infty. \]
Proposition.

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int_0^{\infty} \frac{k^{n-1}}{\varphi(k)(1 + \varphi(k))} \, dk = \infty$$

and

$$\int_0^{\infty} \frac{k^{n-1}}{(1 + \varphi(k))} \, dk = \infty.$$
Proposition.

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int_0^{\infty} \frac{k^{n-1}}{\varphi(k)(1 + \varphi(k))} \, dk = \infty$$

and

$$\int_0^{\infty} \frac{k^{n-1}}{1 + \varphi(k)} \, dk = \infty.$$
Proposition.

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int_0^\infty \frac{k^{n-1}}{\varphi(k)(1 + \varphi(k))} \, dk = \infty$$

and

$$\int_0^\infty \frac{k^{n-1}}{(1 + \varphi(k))} \, dk = \infty.$$
Put $\varphi(k) = k^2$ and let $n = 2$.

Corollary.

*The self-adjoint Laplace operator in $L_2(\mathbb{R}^2)$ has no non-negative singular perturbations with support at one point of \mathbb{R}^2.***
The non-negative singular perturbations of $-\Delta$ in $L_2(\mathbb{R}_2)$ with support at two or more points do exist. Let us consider the restriction A_0 of the multiplication operator operator by k^2, for which the defect subspace \mathcal{N} consists of functions collinear to

$$e_0(k) = \frac{1 - \exp(-i(k \cdot x_0))}{1 + k^2}, \quad x_0 \in \mathbb{R}_2.$$

In this case

$$\|e_0\|^2 = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{(1 + k^2)^2} \, dk < \infty,$$

$$((I + A)A^{-1}e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{k^2(1 + k^2)} \, dk < \infty,$$

$$((I + A)e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{1 + k^2} \, dk = \infty.$$

Hence $G_1 = \|e_0\|^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

Vadim Adamyan
Non-negative perturbations . . .
The non-negative singular perturbations of $-\Delta$ in $L_2(\mathbb{R}_2)$ with support at two or more points do exist. Let us consider the restriction A_0 of the multiplication operator operator by k^2, for which the defect subspace \mathcal{N} consists of functions collinear to

$$e_0(k) = \frac{1 - \exp(-i(k \cdot x_0))}{1 + k^2}, \quad x_0 \in \mathbb{R}_2.$$

In this case

$$\|e_0\|^2 = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{(1 + k^2)^2} \, dk < \infty,$$

$$(I + A) A^{-1} e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{k^2(1 + k^2)} \, dk < \infty,$$

$$(I + A) e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{1 + k^2} \, dk = \infty.$$

Hence $G_1 = \|e_0\|^2 \cdot ((I + A) e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

Vadim Adamyan
Non-negative perturbations ...
The non-negative singular perturbations of $-\Delta$ in $L_2(\mathbb{R}^2)$ with support at two or more points do exist. Let us consider the restriction A_0 of the multiplication operator operator by k^2, for which the defect subspace \mathcal{N} consists of functions collinear to

$$e_0(k) = \frac{1 - \exp(-i(k \cdot x_0))}{1 + k^2}, \; x_0 \in \mathbb{R}^2.$$

In this case

$$\|e_0\|^2 = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{(1 + k^2)^2} \; dk < \infty,$$

$$((I + A)A^{-1}e_0, e_0) = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{k^2(1 + k^2)} \; dk < \infty,$$

$$((I + A)e_0, e_0) = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{1 + k^2} \; dk = \infty.$$

Hence $G_1 = \|e_0\|^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

Vadim Adamyan
Non-negative perturbations...
The non-negative singular perturbations of $-\Delta$ in $L_2(\mathbb{R}_2)$ with support at two or more points do exist. Let us consider the restriction A_0 of the multiplication operator operator by k^2, for which the defect subspace \mathcal{N} consists of functions collinear to

$$e_0(k) = \frac{1 - \exp(-i(k \cdot x_0))}{1 + k^2}, \quad x_0 \in \mathbb{R}_2.$$

In this case

$$\|e_0\|^2 = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{(1 + k^2)^2} \, dk < \infty,$$

$$((I + A)A^{-1}e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{k^2(1 + k^2)} \, dk < \infty,$$

$$((I + A)e_0, e_0) = \int_{\mathbb{R}_2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{1 + k^2} \, dk = \infty.$$

Hence $G_1 = \|e_0\|^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.
The non-negative singular perturbations of \(-\Delta\) in \(L_2(\mathbb{R}^2)\) with support at two or more points do exist. Let us consider the restriction \(A_0\) of the multiplication operator operator by \(k^2\), for which the defect subspace \(\mathcal{N}\) consists of functions collinear to

\[
e_0(k) = \frac{1 - \exp(-i(k \cdot x_0))}{1 + k^2}, \quad x_0 \in \mathbb{R}^2.
\]

In this case

\[
\|e_0\|^2 = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{(1 + k^2)^2} \, dk < \infty,
\]

\[
((I+A)A^{-1}e_0, e_0) = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{k^2(1 + k^2)} \, dk < \infty,
\]

\[
((I+A)e_0, e_0) = \int_{\mathbb{R}^2} \frac{4 \sin^2 \frac{1}{2}(k \cdot x_0)}{1 + k^2} \, dk = \infty.
\]

Hence \(G_1 = \|e_0\|^2 \cdot ((I+A)e_0, e_0)^{-1} > 0\), but \(G_2 = 0\).
As follows, the concerned restriction A_0 of the multiplication operator A by k^2 has non-negative self-adjoint extensions in $L_2(\mathbb{R}^2)$ others then A and A is the maximal element in the set of these extensions.
It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_2(\mathbb{R}_2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(x)$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

\[
\lim_{|x| \to 0} (\ln |x|)^{-1} f(x) - \lim_{|x-x_0| \to 0} (\ln |x-x_0|)^{-1} f(x) = 0,
\]

\[
\lim_{|x| \to 0} \left[f(x) - \ln |x| \lim_{|x'| \to 0} (\ln |x'|)^{-1} f(x') \right] - \lim_{|x-x_0| \to 0} \left[f(x) - \ln |x-x_0| \lim_{|x'-x_0| \to 0} (\ln |x'-x_0|)^{-1} f(x') \right] = 0.
\]
It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_2(\mathbb{R}^2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(x)$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

\[
\lim_{|x| \to 0} (\ln |x|)^{-1} f(x) - \lim_{|x-x_0| \to 0} (\ln |x-x_0|)^{-1} f(x) = 0,
\]

\[
\lim_{|x| \to 0} \left[f(x) - \ln |x| \lim_{|x'| \to 0} (\ln |x'|)^{-1} f(x') \right] - \lim_{|x-x_0| \to 0} \left[f(x) - \ln |x-x_0| \lim_{|x'-x_0| \to 0} (\ln |x'-x_0|)^{-1} f(x') \right] = 0.
\]
It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L^2(\mathbb{R}^2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(x)$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$
\lim_{|x| \to 0} (\ln |x|)^{-1} f(x) - \lim_{|x-x_0| \to 0} (\ln |x-x_0|)^{-1} f(x) = 0,
$$

$$
\lim_{|x| \to 0} \left[f(x) - \ln |x| \lim_{|x'| \to 0} (\ln |x'|)^{-1} f(x') \right] - \lim_{|x-x_0| \to 0} \left[f(x) - \ln |x-x_0| \lim_{|x'-x_0| \to 0} (\ln |x'-x_0|)^{-1} f(x') \right] = 0.
$$
The self-adjoint Laplace operator in $L_2(\mathbb{R}_3)$ has infinitely many non-negative singular perturbations with support at one point of \mathbb{R}_3 and the standardly defined Laplace the maximal element in the set of this perturbation.
Consider the multiplication operator A by k^{2l} in $L_2(\mathbb{R}^n)$ assuming that $4l \leq n + 1$. A is isomorphic to the polyharmonic operator $(-\Delta)^l$ in $L_2(\mathbb{R}^n)$.

Let us consider the restriction A_0 of A with the domain

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \hat{\delta}(f) = 0 \right\}.$$

that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator $(-\Delta)^l$ onto the Sobolev subspace $H^{2l}_2(\mathbb{R}^n \setminus \{0\})$.
Consider the multiplication operator A by k^{2l} in $L_2(\mathbb{R}^n)$ assuming that $4l \leq n + 1$. A is isomorphic to the polyharmonic operator $(-\Delta)^l$ in $L_2(\mathbb{R}^n)$.

Let us consider the restriction A_0 of A with the domain

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \hat{\delta}(f) = 0 \right\}.$$

that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator $(-\Delta)^l$ onto the Sobolev subspace $H^{2l}_{2l}(\mathbb{R}^n \setminus \{0\})$.
Proposition.

If $n < 2l$ then there are infinitely many non-negative singular perturbations of $(-\Delta)^l$ associated with the one-point symmetric restriction A_0 and $(-\Delta)^l$ is the minimal element in the set of the non-negative extensions of A_0 in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$.

Proposition.

If $n = 2l$ then $(-\Delta)^l$ has no such perturbations in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$.

Proposition.

If $n > 2l$ then there is the infinite set of non-negative singular perturbations of $(-\Delta)^l$ associated with A_0 and for those as non-negative extensions of A_0 in the set of the in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$ the operator $(-\Delta)^l$ is the maximal element.
Proposition.

If $n < 2l$ then there are infinitely many non-negative singular perturbations of $(-\Delta)^l$ associated with the one-point symmetric restriction A_0 and $(-\Delta)^l$ is the minimal element in the set of the non-negative extensions of A_0 in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$.

Proposition.

If $n = 2l$ then $(-\Delta)^l$ has no such perturbations in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$.

Proposition.

If $n > 2l$ then there is the infinite set of non-negative singular perturbations of $(-\Delta)^l$ associated with A_0 and for those as non-negative extensions of A_0 in the set of the in $H^2_{2l}(\mathbb{R}_n \setminus \{0\})$ the operator $(-\Delta)^l$ is the maximal element.
Proposition.

If \(n < 2l \) then there are infinitely many non-negative singular perturbations of \((-\Delta)^l\) associated with the one-point symmetric restriction \(A_0 \) and \((-\Delta)^l\) is the minimal element in the set of the non-negative extensions of \(A_0 \) in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \).

Proposition.

If \(n = 2l \) then \((-\Delta)^l\) has no such perturbations in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \).

Proposition.

If \(n > 2l \) then there is the infinite set of non-negative singular perturbations of \((-\Delta)^l\) associated with \(A_0 \) and for those as non-negative extensions of \(A_0 \) in the set of the in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \) the operator \((-\Delta)^l\) is the maximal element.
Proposition.

If $n < 2l$ then there are infinitely many non-negative singular perturbations of $(-\Delta)^{l}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{l}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H^{2}_{2l}(\mathbb{R}^{n} \setminus \{0\})$.

Proposition.

If $n = 2l$ then $(-\Delta)^{l}$ has no such perturbations in $H^{2}_{2l}(\mathbb{R}^{n} \setminus \{0\})$.

Proposition.

If $n > 2l$ then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{l}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H^{2}_{2l}(\mathbb{R}^{n} \setminus \{0\})$ the operator $(-\Delta)^{l}$ is the maximal element.
Proposition.

If \(n < 2l \) then there are infinitely many non-negative singular perturbations of \((-\Delta)^l\) associated with the one-point symmetric restriction \(A_0 \) and \((-\Delta)^l\) is the minimal element in the set of the non-negative extensions of \(A_0 \) in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \).

Proposition.

If \(n = 2l \) then \((-\Delta)^l\) has no such perturbations in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \).

Proposition.

If \(n > 2l \) then there is the infinite set of non-negative singular perturbations of \((-\Delta)^l\) associated with \(A_0 \) and for those as non-negative extensions of \(A_0 \) in the set of the in \(H^2_{2l}(\mathbb{R}^n \setminus \{0\}) \) the operator \((-\Delta)^l\) is the maximal element.