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Abstract


We compare the numerical properties of the different numerical
methods for solving the H∞ optimization problems for linear discrete-
time systems. It is shown that the methods based on the solution of
the associated discrete-time algebraic Riccati equation may be unstable
due to an unnecessary increase in the condition number and that they
have restricted application for ill-conditioned and singular problems.
The experiments confirm that the numerical solution methods that are
based on the solution of a Linear Matrix Inequality (LMI) are a much
more reliable although much more expensive numerical technique for
solving H∞ optimization problems. Directions for developing high-
performance software for H∞ optimization are discussed.
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1 Introduction


The discrete-time H∞ optimization problem is usually not presented in de-
tail in the control theory literature [10, 17] due to the fact that it is math-
ematically equivalent to an appropriate continuous-time H∞-optimization
problem through a simple bilinear transformation. However, from the point
of view of numerical methods, the implementation of bilinear transforma-
tions (especially for high order systems) is accompanied with severe difficul-
ties, due to a possible increase in sensitivity as well as high computational
costs. For this reason it is more appropriate to use numerical methods that
are able to directly solve the discrete-time optimal H∞ optimization prob-
lem. Several such methods are available in the literature, but their numerical
properties have not been studied and compared in detail. For this reason,
in practice one faces the difficult task to choose the best software yielding
the best solution for a given discrete-time H∞ optimization problem.


In this report we compare the numerical properties of the different meth-
ods for solving the H∞-optimization problems for linear discrete-time sys-
tems. We show that the methods based on the solution of algebraic Riccati
equations introduce several numerical difficulties. In particular, we show
that this approach is not always stable, due to the fact that it introduces
unnecessary sensitivity and may lead to ill-conditioned or even singular sub-
problems.


Our extensive experiments show that the solution methods that are based
on the LMI (linear matrix inequality) formulation is a much more reliable,
although more expensive, numerical technique for solving H∞ optimization
problems.


This leads to the conclusion that a numerically reliable and efficient
method for the discrete-time H∞-optimization is still lacking. Directions
for developing high-performance software for such optimization problems
are briefly discussed.


The report is organized as follows. In Section 2 we give the standard
definition of the discrete-time H∞ optimization problem. The available nu-
merical methods for solving this problem are surveyed in Section 3. They
are divided into three groups involving implementation of bilinear trans-
formation, solution of Riccati equations and solutions of LMIs. A Riccati
equations-based method is described in some detail in Section 4, while in
Section 5 we present an LMI-based method. The available software for
discrete-time H∞ optimization is listed in Section 6. This software includes
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functions from MATLAB1 toolboxes as well as mex-files based on SLICOT
Fortran 77 routines [16]. Results from the numerical evaluation of the dif-
ferent methods for a restricted class of examples are presented in Section
7. Finally, in Section 8 we give some conclusions derived from the nu-
merical experiments and we discuss directions for further development of
high-performance software for discrete-time H∞ optimization.


2 The discrete-time H∞-optimization problem


Consider a linear discrete-time system, described by the equations


xk+1 = Axk + B1wk + B2uk,


zk = C1xk + D11wk + D12uk, (1)


yk = C2xk + D21wk + D22uk,


where xk ∈ R
n is the state vector, wk ∈ R


m1 is a exogenous input vector (the
disturbance), uk ∈ R


m2 is the control input vector, zk ∈ R
p1 is a controlled


vector, and yk ∈ R
p2 is a measurement vector. The transfer function matrix


of the system is denoted by


P (z) =


[


P11(z) P12(z)
P21(z) P22(z)


]


=̂








A B1 B2


C1 D11 D12


C2 D21 D22





 (2)


=̂ :


[


A B


C D


]


.


The H∞-suboptimal discrete-time control problem is to find an internally
stabilizing controller K(z) such that, for a pre-specified positive value of γ,
the inequality


‖F`(P,K)‖∞ < γ (3)


is satisfied, where F`(P,K) is the lower linear fractional transformation
(LFT) on K(z), equal to the closed-loop transfer function Tzw(z) from w to
z,


Tzw(z) := F`(P,K) = P11 + P12K(I − P22K)−1P21.


1MATLAB is a trade mark of MathWorks, Inc.
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In the H∞-optimization control problem one tries to find the infimum
of γ (further denoted by γopt) which satisfies (3). This infimum is difficult
to find analytically in the general case. It is usually computed numerically
by a root-finding procedure involving some method for suboptimal design.
The accuracy of achieving the infimum is controlled by an appropriately
chosen tolerance. The solution of the H∞-optimization control problem
corresponds to the best disturbance attenuation at the controlled output of
the closed-loop system.


3 Numerical methods for H∞-suboptimal design


of discrete-time controllers


There are three groups of methods for solving discrete-time H∞-optimization
problems.


• Methods based on a bilinear transformation to a continuous-time prob-
lem [1, 4].


These methods allow to solve the discrete-time H∞-optimization prob-
lem via the algorithms and software for solving continuous-time prob-
lems. They implement a bilinear transformation and its inverse so that
the accuracy of the final solution depends on the condition number of
this transformation. Typically such methods perform badly for high
order problems and should be considered unreliable from the numer-
ical point of view. Note that it is possible to derive formulas for the
discrete-time controller implementing analytically the bilinear trans-
formation [12]. Unfortunately, these formulas are very complicated
and we were unable to find a stabilizing controller when applying these
formulas to our examples.


• Riccati equations based methods [10, 9].


These methods include the solution of two matrix algebraic Riccati
equations and represent an efficient way for solving the H∞-suboptimal
problem requiring a volume of computational operations proportional
to n3. Their implementation, however, is restricted only to regular
plants, i.e. plants for which the matrices D12 and D21 are of full
rank and the transfer functions from controls to controlled outputs
(P12(z)) and from disturbance to measured outputs (P21(z)) have no
invariant zeros on the unit circle. Although various extensions are
proposed for the singular plants, the numerical difficulties in such cases
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are not overcame. Also, for γ approaching the optimum value γopt the
Riccati equations become ill-conditioned which may drastically affect
the accuracy of the computed controller matrices.


• LMI-based methods [7, 6].


These methods are based on the solution of three or more linear matrix
ineqalities (LMIs) derived from Lyapunov based criteria. The main
advantage of these methods is that they can be applied without diffi-
culties to singular plants, the only assumption being the stabilizability
and detectability of the triple (A,B2, C2). The LMI approach yields a
finite-dimensional parametrization of all H∞-controllers which allows
to exploit the remaining freedom for controller order reduction and
for handling additional constraints on the closed-loop performance.
The LMIs are solved by convex optimization algorithms which require
a volume of computational operations proportional to n6. This fact
restricts the implementation of LMI-based methods to relatively low
order plants in contrast to the Riccati equations based methods.


In the next two sections we consider in more detail two methods based on
Riccati equations solution and LMIs solution, respectively, which in our view
represent the state-of-the-art in solving the discrete-time H∞-suboptimal
problem.


4 Riccati equation based methods


In this section we briefly present the method for the design of subopti-
mal H∞-controllers that is based on the solution of discrete-time algebraic
Riccati equations, as proposed in [10]. This method (which we call Riccati-
method) is derived under the following assumptions.


A1 (A,B2) is stabilizable and (C2, A) is detectable;


A2


[


A − ejΘIn B2


C1 D12


]


has full column rank for all Θ ∈ [0, 2π);


A3


[


A − ejΘIn B1


C2 D21


]


has full row rank for all Θ ∈ [0, 2π).


We shall assume also that a loop-shifting transformation that enables
to set D22 = 0 has been carried out. We shall return to the general case
(D22 6= 0) later on.
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Note that the method under consideration does not involve reduction of
the matrices D12 and D21 to some special form, as it is usually required in
the design of continuous-time hinf -controllers [5].


Let


C̄ =


[


C1


0


]


, D̄ =


[


D11 D12


Im1
0


]


and define the matrices


J =


[


Ip1
0


0 −γ2Im1


]


, Ĵ =


[


Im1
0


0 −γ2Im2


]


, J̃ =


[


Im1
0


0 −γ2Ip1


]


.


Let X∞ be the solution to the discrete-time algebraic Riccati equation


X∞ = C̄TJC̄ + AT X∞A − LT R−1L, (4)


where


R = D̄TJD̄ + BTX∞B =:


[


R1 RT
2


R2 R3


]


,


L = D̄T JC̄ + BTX∞A =:


[


L1


L2


]


.


Assume that there exists an m2 × m2 matrix V12 such that


V T
12V12 = R3


and an m1 × m1 matrix V21 such that


V T
21V21 = −γ−2∇, ∇ = R1 − RT


2 R−1
3 R2 < 0.


Define the matrices


[


At B̃t


Ct D̃t


]


=:








At B̃t1 B̃t2


Ct1 D̃t11 D̃t12


Ct2 D̃t21 D̃t22





 =








A − B1∇
−1L∇ B1V


−1
21 0


V12R
−1
3 (L2 − R2∇


−1L∇) V12R
−1
3 R2V


−1
21 I


C2 − D21∇
−1L∇ D21V


−1
21 0





 ,


where
L∇ = L1 − RT


2 R−1
3 L2.


Let Z∞ be the solution to the discrete-time algebraic Riccati equation


Z∞ = B̃tĴ B̃T
t + AtZ∞AT


t − MtS
−1
t MT


t , (5)
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in which


St = D̃tĴD̃T
t + CtZ∞CT


t =:


[


St1 St2


ST
t2


St3


]


,


Mt = B̃tĴD̃T
t + AtZ∞CT


t =: [Mt1Mt2 ].


In the following, we refer to equations (4) and (5) as X-Riccati equation and
Z-Riccati equation, respectively.


As shown in [10], a stabilizing controller that satisfies


‖F`(P,K)‖∞ < γ


exists, if and only if
1. There exists a solution to the Riccati equation (4) satisfying


X∞ ≥ 0, ∇ < 0,


such that A − BR−1L is asymptotically stable.
2. There exists a solution to the Riccati equation (5) such that


Z∞ ≥ 0, St1 − St2S
−1
t3


ST
t2


< 0,


with At − MtS
−1
t Ct asymptotically stable.


In this case, a controller that achieves the objective is


x̂k+1 = Atx̂k + B2uk + Mt2S
−1
t3


(yk − Ct2 x̂k),


V12uk = −Ct1 x̂k − St2S
−1
t3


(yk − Ct2 x̂k),


which yields


K0 =


[


At − B2V
−1
12 (Ct1 − St2S


−1
t3


Ct2) − Mt2S
−1
t3


Ct2 −B2V
−1
12 St2S


−1
t3


+ Mt2S
−1
t3


−V −1
12 (Ct1 − St2S


−1
t3


Ct2) −V −1
12 St2S


−1
t3


]


.


This is the so called central controller which is widely used in practice. In
the following we only consider the computation of the central suboptimal
controller.


Consider now the general case when D22 6= 0. Suppose that


K̂ =


[


Âk B̂k


Ĉk D̂k


]
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is a stabilizing controller for D22 set to zero, and satisfies


‖F`


(


P −


[


0 0
0 D22


]


, K̂


)


‖∞ < γ.


Then [15]


F`(P, K̂(I + D22K̂)−1) = P11 + P12K̂(I + D22K̂ − P22K̂)−1P21


= F`


(


P −


[


0 0
0 D22


]


, K̂


)


.


In this way a controller K̂ for


P −


[


0 0
0 D22


]


yields a controller K = K̂(I + D22K̂)−1 for P . It can be shown that


K =


[


Âk − B̂kD22(Im2
+ D̂kD22)


−1Ĉk B̂k − B̂kD22(Im2
+ D̂kD22)


−1D̂k


(Im2
+ D̂kD22)


−1Ĉk (Im2
+ D̂kD22)


−1D̂k


]


.


In order to be able to determine K from K̂, we must exclude the possibility
that the feedback system becomes ill-posed, i.e. det(I + K̂(∞)D22) = 0.


The following numerical aspects of the presented method should be
noted.


1. The main computational task in the Riccati-method is the solution
of the X- and Z-Riccati equations ((4) and (5), respectively). The
existing software [16] allows to solve such equations in a reliable way
up to the order of several hundreds. This software produces estimates
of the Riccati equations conditioning and accuracy of solution. But
it should be noted that with γ approaching γopt one or both of the
Riccati equations become ill-conditioned. This typically leads to a
loss of accuracy in the solution.


2. Apart from the accuracy of the solution of the Riccati equations, the
accuracy of the controller matrices depends on the conditioning of the
matrices R3, ∇, St3, V12 and V21. It is not clear what is the connection
between the conditioning of these matrices and the conditioning of the
original problem. Thus the analysis of the numerical properties of the
method is still a mostly open problem.
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5 LMI-based H∞-optimization


Consider a proper discrete-time plant P (z) with state equations in the form
(1) with D22 = 0 and let N12 and N21 denote the kernels (null spaces) of the
concatenated matrices [BT


2 , DT
12] and [C2, D21], respectively. The discrete-


time suboptimal H∞-problem (3) is solvable if and only if there exist two
symmetric matrices R,S ∈ R


n×n , satisfying the following system of three
linear matrix inequalities (LMIs) [7]


[


N12 0


0 I


]T






ARAT − R ARCT
1 B1


C1RAT −γI + C1RCT
1 D11


BT
1 DT


11 −γI








[


N12 0


0 I


]


< 0, (6)


[


N21 0


0 I


]T






AT SA − S AT SB1 CT
1


BT
1 SA −γI + BT


1 SB1 DT
11


C1 D11 −γI








[


N21 0


0 I


]


< 0, (7)


[


R I
I S


]


> 0. (8)


Let (R,S) be any solution of this system of LMIs. Then, a full order γ-
suboptimal discrete-time controller K(z) = CK(zI − AK)−1BK is obtained
in the following way [6]. One constructs the matrix


∆ = ∆T := −














−R 0 A + B2DKC2 B1 + B2DKD21


0 −γI C1 + D12DKC2 D11 + D12DKD21


∗ ∗ −S 0
∗ ∗ 0 −γI














(9)


and determines a solution DK , which satisfies ∆ > 0. Then one computes


the least-squares solutions


[


ΘB


∗


]


and


[


ΘC


∗


]


of the linear systems of


equations




















0 0 0 C2 D21


0
0 −∆


CT
2


DT
21






































ΘB


∗




















= −




















0


−I
0


AT S
BT


1 S




















, (10)
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0 BT
2 DT


12 0 0


B2


D12 −∆
0
0






































ΘC


∗




















= −




















0


AR
C1R
−I
0




















. (11)


Then one computes, via the computation of singular value decompositions
(SVDs), two invertible matrices M,N ∈ R


n×n such that


MNT = I − RS, (12)


and then matrices AK , BK and CK by solving


NBK = −SB2DK + ΘT
B , (13)


CKMT = −DKC2R + ΘC , (14)


−NAKMT = SB2ΘC + ΘT
BC2R + S(A − B2DKC2)R


+














−I
0


AT S + CT
2 ΘB


BT
1 + DT


21ΘB














T


∆−1














AR + B2ΘC


C1R + D12ΘC


−I
0














. (15)


Note that these formulas for controller matrices may be used also in the
case of the Riccati-based approach by setting R−1 = γ−1X and S−1 = γ−1Y ,
where X and Y are the solutions of the corresponding Riccati equations.


The LMI-method has the following numerical properties.


1. Computing solutions (R,S) of the LMI system (6)-(8) is a convex op-
timization problem. The available polynomial type algorithms [3, 13]
allow to solve this LMI problem with a complexity of O(n6) opera-
tions. Also, it should be noted that the sensitivity of the LMIs under
consideration, subject to variations in the plant data, may affect the
accuracy of the matrices R and S and hence the accuracy of controller
matrices. Unfortunately, it is an open problem how the sensitivity of
the LMIs is connected to the sensitivity of the given H∞-suboptimal
problem.


2. The systems of equations (10) and (11) are ill-conditioned, when the
matrix ∆ is nearly singular. In such a case, the solutions ΘB and
ΘC are of large norms, which results in fast controller dynamics and
numerical instability when closing the loop. This difficulty may be
removed by increasing the value of γ.
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3. The matrices M and N are ill-conditioned when I − RS is nearly
singular. This may affect the accuracy of the solution of the equations
(13)-(15). As shown in [7], the rank of the matrix I − RS determines
the controller order. If this matrix has a numerical rank less than n
then it is possible to switch to formulas for reduced order controllers.


On the basis of these brief discussions, it is difficult to make a firm con-
clusion about the numerical properties of the presented methods. However,
some impression about the numerical behavior of these methods may be
derived from the numerical experiments presented below.


6 Available software


In our experiments we compare the performance of the following routines
for the solution of the discrete-time H∞-optimization problem.


• dhfsyn Routine from the µ-toolbox [1] utilizing a bilinear transforma-
tion to a continuous-time system. The user has to supply a tolerance,
which determines the relative difference between final γ-values in the
bisection procedure.


• dhinf Routine from Robust Control Toolbox [4] also implementing
a bilinear transformation to a continuous-time system. There is no
tolerance set by the user.


• dhinfric Routine from the LMI toolbox [9] based on the solution of
two discrete-time algebraic Riccati equations. The controller matrices
are determined by the formulas given in Section 5 with R−1 = γ−1X
and S−1 = γ−1Y . Tolerance determining the required relative accu-
racy in finding γopt may be set by the user.


• dhinflmi Routine from the LMI toolbox [9], implementing the LMI-
based method described in Section 5. The routine has the capability
to reduce the controller order when possible. A tolerance equal to the
required relative accuracy may be set by the user.


• dhw M-file intended for the design of a suboptimal H∞-controller im-
plementing the method described in Section 4. There is a provision
to compute the exact condition numbers of the Riccati equations in-
volved.
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• dishin mex-file from the SLICOT library utilizing the Fortran 77
routine SB10DD. It implements the same formulae as dhw, except that
instead of the exact condition numbers of the Riccati equations one
computes their cheap estimates.


In the Appendix we give the M-file dhw along with the M-file cndricd


intended for determination of the exact condition numbers of the correspond-
ing Riccati equations. It should be noted that in the most recent version of
MATLAB, some of these routines are not availbale anymore.


7 Numerical experiments


First we present a simple example illustrating the difficulties arising in a
particular case of H∞-optimization design.


Example 1 Consider the discrete-time system


xk+1 = Axk + B1wk + B2uk,


zk = C1xk + D11wk + D12uk,


yk = C2xk + D21wk + D22uk


where xk ∈ R
3, wk ∈ R


1, uk ∈ R
1, yk ∈ R


1, zk ∈ R
1 and


A =








−2.1 −1 1
4 −1.8 2
−2 1 −0.7





 , B1 = B2 =








−1
−2


1





 ,


C1 = C2 =
[


−2 1 −1
]


, D11 = 1, D12 = 1, D21 = 1, D22 = 0.


This example is interesting due to the fact that for the given system
it is possible to use a controller which compensates entirely the effect of
the disturbance so that the transfer function between the disturbance wk


and the controlled output zk becomes equal to 0. In this way the optimum
value of the H∞-norm is equal to 0 and the optimal controller reduces to
the static output feedback K = −1. For this controller the equations of the
closed-loop system become


xk+1 = (A − B2C2)xk + (B1 − B2D21)wk,


zk = (C1 − D12C2)xk + (D11 − D12D21)wk,


yk = −uk


12







For the chosen matrices we have


B1 − B2D21 =








0
0
0





 ,


C1 − D12C2 = [0 0 0] ,


D11 − D12D21 = 0


and the closed-loop system with state matrix


A − B2C2 =








0.1 0 0
0 0.2 0
0 0 0.3








is asymptotically stable.
This example represents a difficult test for some of the routines under


consideration as shown below.


DHFSYN


This routine was not able to produce a solution until tol was increased
to 108 × eps where eps is the relative machine precision. After several
warnings the routine produced the following result.


gfin =


1.4901e-08


ak =


0.1000 -0.0000 0.0000


-0.0000 0.2000 -0.0000


-0.0000 0.0000 0.3000


bk =


1.0e-14 *


0.3544


-0.0000


-0.1510


13







ck =


1.0e-14 *


0.6112 -0.0000 0.0725


dk =


-1.0000


where gfin is the computed approximation of γopt.
Note that the controller is stable, thus the internal stability of the closed-


loop system is ensured.


DHINF


This routine produces accurate result for the example under considera-
tion.


ak =


0.1000 -0.0000 0.0000


0.0000 0.2000 0.0000


-0.0000 0.0000 0.3000


bk =


0


0


0


ck =


0 0 0


dk =


-1


DHINFLMI
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This routines needed 25 iterations in order to find the optimal perfor-
mance


gfin =


2.3563e-012


with tolerance equal to eps and guaranteed absolute accuracy 9.5 × 10−11.
The controller obtained is


ak =


[]


bk =


Empty matrix: 0-by-1


ck =


Empty matrix: 1-by-0


dk =


-1.0000


which is the correct answer of the problem.


DHINFRIC


This routine required a large tolerance in order to produce a solution.
For tol = 5 × 1011 eps the following result was obtained.


gfin =


0.0033


ak =


0.1000 -0.0000 0.0000


0.0000 0.3000 -0.0016


-0.0000 -0.0016 0.2000
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bk =


1.0e-005 *


-0.4581


0.4432


-0.9236


ck =


1.0e-005 *


0.9163 0.4506 -0.4656


dk =


-1.0000


DHW


In this case we were able to produce a solution for γ = 108 × eps. The
following controller matrices were obtained.


ak =


0.1000 0 0


0.0000 0.2000 0.0000


-0.0000 0.0000 0.3000


bk =


1.0e-015 *


0


0.4441


-0.2220


ck =


16







0 0 0


dk =


-1


The reciprocal condition numbers of the corresponding Riccati equations are


xcond =


0.1447


ycond =


0.1852


so that the Riccati equations are very well conditioned.


DISHIN


This routine also required a large tolerance tol = 1011 × eps in order to
produce a solution. The controller matrices obtained are


ak =


0.1000 -0.0000 0.0000


-0.0000 0.2000 0.0000


0.0000 -0.0000 0.3000


bk =


1.0e-014 *


-0.0444


-0.3109


0.2220


ck =


1.0e-014 *


-0.1776 0.1776 -0.3775
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dk =


-1.0000


In this way only the routine DHINFLMI was able to remove the unnec-
essary dynamics of the controller producing static output feedback. This
routine also found the smallest value for the optimal H∞-norm. The most
inaccurate results for this particular case were produced by the routine
DHINFRICC.


Example 2 Consider a family of discrete-time H∞- optimization prob-
lems for a system with


A =






































0.2 0 0 0 0 0 0 0
0 0.3 0 0 0 0 0 0
0 0 0.4 0 0 0 0 0
0 0 0 0.5 0 0 0 0
0 0 0 0 0.6 0 0 0
0 0 0 0 0 0.7 0 0
0 0 0 0 0 0 1 − α 0
0 0 0 0 0 0 0 −1 + α






































,


B1 =






































0.1 0 0
0 −0.1 0
0 0 0.1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0






































, B2 =






































0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1






































,


C1 =








1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0





 , C2 =


[


0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


]


,


D11 =








0.1 0 0
0 0.1 0
0 0 0.1





 , D12 =








0 0
β 0
0 β





 ,


D21 =


[


0 η 0
0 0 η


]


, D22 =


[


0 0
0 0


]


.
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Note that the pair (A,B2) is stabilizable and the pair (A,C2) is detectable.
When α is decreased, then two open-loop poles approach the unit circle.
This creates difficulties for the methods based on the solution of Riccati
equations. If the parameter β (η) is zero then the condition A2 (A3),
given in Section 4, is violated, i.e. the plant becomes singular. Changing
parameters α, β, η allows to reveal the numerical properties of the different
methods for H∞-optimization.


7.1 Influence of α


Consider first the influence of the parameter α on the design. For this aim
we vary α between 10−12 and 5.37 × 10−4 keeping β = 1 and η = 1.


DHFSYN and DHINF


These routines were not able to produce a solution for α in this region,
apparently due to numerical difficulties associated with the used bilinear
transformation.


DHINFLMI


This routine is used with a tolerance for the relative accuracy in deter-
mining the optimal H∞-norm equal to the default value (10−2). In Table
7.1 we show the number of iterations in solving the LMIs as a function of
α. The number of iterations has a maximum for α = 3.28 × 10−8.


The optimum value of γ as a function of α is given in Figure 1. There
is a sudden decrease of γopt for α between 10−8 and 10−7.


In Figure 2 we show the dependence of the norms of the LMI solutions
R and S as functions of α. These norms increase slightly when a change in
α is causing a large change of γopt.


As we can see from Figure 3, the norms of the controller matrices do not
depend on α.


In this way we see that the change of the parameter α does not signif-
icantly influence the solution of the H∞-problem found by the LMI-based
method. We will see below, however, that the variation of this parameter
profoundly affects the methods based on the solution of Riccati equations.


DHINFRIC


This routine is used with the defaults tolerance 10−2 for the relative
accuracy of the optimal H∞-norm a(10−2).
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Table 1: Number of iterations as a function of α


k α Number
of iterations


1 1 × 10−12 16
2 2 × 10−12 16
3 4 × 10−12 16
4 8 × 10−12 16


15 1.64 × 10−12 23
16 3.28 × 10−8 24
17 6.56 × 10−8 21
18 1.31 × 10−7 20
19 2.62 × 10−7 19
20 5.24 × 10−7 19
21 1.05 × 10−6 18
22 2.09 × 10−6 17
23 4.19 × 10−6 15
24 8.39 × 10−6 16
25 1.68 × 10−5 17
26 3.56 × 10−5 16
27 6.71 × 10−5 17
28 1.34 × 10−4 17
29 2.68 × 10−4 16
30 5.37 × 10−4 15
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Figure 1: DHINFLMI: Optimal γ as a function of α
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Figure 2: DHINFLMI: Norms of R and S as functions of α


The norms of the Riccati solutions X and Y as function of α is depicted
in Figure 4. They have the same behavior as the norms of the LMI solutions
in Figure 2.


The norms of the controller matrices (Figure 5) remain constant when
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Figure 3: DHINFLMI: Norms of controller matrices as functions of α
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Figure 4: DHINFRIC: Norms of X and Y as functions of α


α is varied.
This routine does not produce any information about the conditioning


of the two Riccati equations that have to be solved. The next two routines
provide such information and it is seen that with the decrease of α the
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Figure 5: DHINFRIC: Norms of controller matrices as functions of α


conditioning of the Riccati equations may deteriorate.


DHW
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Figure 6: DHW: Norms of X and Z as functions of α


The norms of the Riccati solutions X and Z are depicted in Figure
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6, which shows that the norm of the solution Z varies non-smoothly with
increasing α.
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Figure 7: DHW: Exact condition numbers of the Riccati equations as func-
tions of α


In Figure 7 we see that the conditioning of both Riccati equations in-
creases almost inversely proportional to α. Hence for values of α approaching
the machine precision from above, the solutions of the Riccati equations may
be entirely wrong. In this way the two open-loop poles, approaching the unit
circle in the complex plane, have a significant influence on the accuracy of
solution. This effect may be considered entirely as a result of the refor-
mulation of the H∞-optimization problem as optimization problem based
on Riccati equations. It is interesting to note that the controller matrices
again have constant norms, as in the case when the LMI formulation of the
problem is used (Figure 8).


In Figures 9 and 10 we show the behavior of the Riccati solutions and
the conditioning of the Riccati equations, respectively, for α varying in the
range 10−8 − 10−7. We see that in this range the solution of the Z-equation
and the conditioning of this equation are very sensitive to changes in α.
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Figure 8: DHW: Norms of controller matrices as functions of α
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Figure 9: DHW: Norms of X and Z as functions of α
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Figure 10: DHW: Exact condition numbers of the Riccati equations as
functions of α
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Figure 11: DISHIN: Estimates of the condition number of the Riccati
equations as function of α


The results from this routine coincide with the results from routine
DHW as one may expect. That is why in Figure 11 we show only the
estimates of the condition numbers of the solved Riccati equations. We
see that the routine produces underestimates which represent correctly the
behavior of the true condition numbers.


7.2 Influence of β


The values of the parameters β and η may also have a significant effect on
the solution of the H∞-optimization problem for the example under consid-
eration. In what follows we consider the results obtained by the different
routines. In these experiments we take α = 10−4 and η = 1.


DHINFLMI


In Table 7.2 we give the number of iterations in solving the LMIs for
different values of β. The maximum number of iterations is achieved for
β = 3.2 × 10−5.


The optimum values of γ for different values of β are shown in Figure
12. With β approaching zero, γ is tending to a constant value.
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Table 2: Number of iterations as a function of β


k β Number
of iterations


1 1 × 10−6 35
2 2 × 10−6 35
3 4 × 10−6 35
4 8 × 10−6 49
5 1.6 × 10−5 53
6 3.2 × 10−5 61
7 6.4 × 10−5 37
8 1.28 × 10−4 37
9 2.56 × 10−4 49


10 5.12 × 10−3 41
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Figure 12: DHINFLMI: Optimal γ as a function of β


In Figure 13 we show the dependence of the norms of the LMI solutions
on β and in Figure 14 we show the norms of the controller matrices as
functions of this parameter.


In order to investigate more carefully the behavior of DHINFLMI, we
performed similar experiments for α = 0, η = 0 and β varying in the range
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Figure 13: DHINFLMI: Norms of R and S as functions of β
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Figure 14: DHINFLMI: Norms of controller matrices as functions of β


10−14−210×10−14. (Note that for these values of α and η the other routines
are not able to produce solutions.)


We see from Figure 15 that the optimum value of γ remains constant
even for values of β approaching the machine precision.
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Figure 15: DHINFLMI: Optimal γ for small values of β
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Figure 16: DHINFLMI: Norms of R and S for small values of β


The norms of LMIs solutions and the norms of controller matrices are
shown in Figures 16 and 17, respectively.


It is interesting also to investigate the behavior of DHINFLMI for
different values of the tolerance tol used in the determination of the optimal
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Figure 17: DHINFLMI: Norms of controller matrices for small values of β
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Figure 18: DHINFLMI: Optimal γ for different values of tol


In Figures 18 and 19 we show the dependence of the optimal value of γ
and the norms of the LMIs solutions, respectively, on tol. Note that γ and
‖R‖, ‖S‖ decrease smoothly with tol even for a tolerance tending to the
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Figure 19: DHINFLMI: Norms of R and S for different values of tol


machine precision.


10
−16


10
−15


10
−14


10
−13


10
−12


10
−11


10
−10


10
−9


10
−8


10
−3


10
−2


10
−1


10
0


Norms of the controller matrices


tol


N
or


m
s 


of
 th


e 
co


nt
ro


lle
r 


m
at


ric
es


norm(Ak)
norm(Bk)
norm(Ck)
norm(Dk)


Figure 20: DHINFLMI: Norms of controller matrices for different values
of tol


The norms of the controller matrices, however, change significantly with
tol increasing to 10−9 as seen from Figure 20. This is explained by the
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Figure 21: DHINFLMI: Size of the controller for different values of tol


change of the controller size for this value of tol as shown in Figure 21. This
is a useful capability of the routine DHINFLMI which allows to reduce
the size of the controller whenever possible.


DHINFRIC


The routine DHINFRIC was unable to solve the discrete-time H∞-
optimization problem for values of β smaller than 10−7. We see from Figure
22 that for β decreasing to 10−6 the values of γ increase to 0.29 which is
larger than the value obtained by DHINFLMI (0.2667).


The norms of the Riccati solutions tend to decrease with the decrease of
γ. (Figure 23.)


Figure 24 reveals a disadvantage of DHINFRIC which is typical for the
routines based on Riccati equations. The norms of the controller matrices
increase inversely proportional with β and η (inversely proportional with
the minimum singular value of D12 or D21 in the general case).


In Figure 25 we show the norms of the Riccati solutions for small values
of β. It is interesting that the norms do not change smoothly when varying
β.


For β tending to 10−7 the norms of the controller matrices approach
107 (Figure 26) which is unacceptable from the point of view of controller
implementation.
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Figure 22: DHINFRIC: Optimal γ as a function of β
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Figure 23: DHINFRIC: Norms of X and Y as functions of β


DHW


The norms of the Riccati solutions X and Z as functions of β are depicted
in Figure 27. Although the routine DHW is also based on the two Riccati
equations solutions as the routine DHINFRIC we see a different behavior
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Figure 24: DHINFRIC: Norms of controller matrices as functions of β
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Figure 25: DHINFRIC: Norms of X and Y as functions of β


of these solutions (compare with Figure 23).
We see from Figure 28 that the condition number of the X-Riccati equa-


tions approaches 1016 when β decreases to 10−6. This explains the fact that
the routine DHW was unable to find a solution for β < 10−6.
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Figure 26: DHINFRIC: Norms of controller matrices as functions of β
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Figure 27: DHW: Norms of X and Z as functions of β


The norms of the controller matrices increase with the decrease of β
exactly as in the case of DHINFRIC.
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Figure 28: DHW: Exact condition numbers of the Riccati equations as
functions of β
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Figure 29: DHW: Norms of controller matrices as functions of β
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DISHIN
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Figure 30: DISHIN: Estimates of the condition number of the Riccati
equations as function of β
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Figure 31: DISHIN: Norms of controller matrices as functions of β


The behavior of this routine with the variation of β is similar to this of
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DHW. DISHIN produces a solution for β > 10−6 and the conditioning of
the X-Riccati equation and the controller matrices norms increase rapidly
with the decrease of β (Figures 30 and 31).


8 Conclusions


The following conclusions can be derived from the restricted number of nu-
merical experiments done.


• The experiments show serious disadvantages of the routines based on
Riccati equations. In the cases when an invariant zero of P12 or P21


tends to the unit circle, the condition numbers of the Riccati equations
approach 1/eps while in the same cases the solution obtained by the
LMI-based method does not show any singularity and allows to obtain
smaller values of γopt. The norms of the controller matrices obtained
by the Riccati approach become unacceptably large when the matrices
D12 or D21 tend to matrices with smaller numerical rank.


• It is clear that the fulfillment of conditions A2 and A3 (Section 4)
is important only for the methods based on Riccati equations. The
violation of these conditions does not affect the method based on LMIs.
This confirms that the terms ’regular plant’ and ’singular plant’ are
meaningful only in the context of the Riccati-based methods.


• Although the LMI based method produces the best solution it is nec-
essary to take into account that the numerical properties of the second
step of this method - the computation of controller matrices - are not
studied well. A numerical analysis showing some type of stability of
the method is still needed.


• It seems appropriate to study the sensitivity of the original discrete-
time H∞-optimization problem and the sensitivity of the correspond-
ing LMI formulations.


• High performance software for solving H∞-optimization problems should
include methods for regularization of ill-conditioned problems. Such
method have to provide automatically the provision to use controllers
of different size. It seems justified to combine in some way the Riccati-
based approach and the LMI approach in order to develop an efficient
and numerically reliable H∞-optimization method.
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Appendix. M-files for discrete-time H∞ optimiza-


tion and estimation of Riccati equation conditioning


function [al,bl,cl,dl,ak,bk,ck,dk,x,y,xcond,ycond] = dhw(a,b,c,d,m2,p2,gamma)


%


% Design of a discrete-time H-infinity suboptimal controller


% implementing the formulas from Green and Limebeer


%


[n,m] = size(b);


[p,n] = size(c);


m1 = m - m2;


p1 = p - p2;


%


b1 = b(:,1:m1);


b2 = b(:,m1+1:m);


c1 = c(1:p1,:);


c2 = c(p1+1:p,:);


%


d11 = d(1:p1,1:m1);


d12 = d(1:p1,m1+1:m);


d21 = d(p1+1:p,1:m1);


d22 = d(p1+1:p,m1+1:m);


%


d1d = [d11 d12];


r = d1d’*d1d - [gamma^2*eye(m1) zeros(m1,m2)


zeros(m2,m1) zeros(m2,m2)];


ax = a - b*(r\d1d’)*c1;


cx = c1’*c1 - c1’*d1d*(r\d1d’)*c1;


%if norm(cx)<sqrt(eps)


% cx = zeros(n);


%end


%


% Solution of X-Riccati equation


%


%cx


%[x,l,g,rr] = dare(ax,b,cx,r);


[x,l,g,rr] = dare(a,b,c1’*c1,r,c1’*d1d);


%[x,w,rcond,ferr] = ricdsolv(1,ax,cx,b*(r\b’));


%[rcon,ferr] = drcon(a,b*(r\b’),c1’*c1,x);
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xcond = cndricd(ax,cx,b*(r\b’),x);


%rcon


%ex = eig(x)


%


% Accuracy test


%


%resx = x-a’*x*a-c1’*c1+(a’*x*b+c1’*d1d)*((r+b’*x*b)\(a’*x*b+c1’*d1d)’);


%norm_resx = norm(resx)/norm(x)


%


r1 = d11’*d11 - (gamma^2)*eye(m1)+b1’*x*b1;


r2 = d12’*d11 + b2’*x*b1;


r3 = d12’*d12 + b2’*x*b2;


%con_r3 = cond(r3)


%r = [r1 r2’;r2 r3];


h1 = d11’*c1 + b1’*x*a;


h2 = d12’*c1 + b2’*x*a;


h = [h1;h2];


%eig_l = eig(a-b*(r\h))


del = r1 - r2’*(r3\r2);


%con_del = cond(del)


%eig_delta = eig(del)


ldel = h1 - r2’*(r3\h2);


v12 = chol(r3);


%con_v12 = cond(v12)


v21 = chol(-del/gamma^2);


%con_v21 = cond(v21)


%


at = a - b1*(del\ldel);


bt1 = b1/v21;


ct1 = v12*(r3\h2 - r3\r2*(del\ldel));


ct2 = c2 - d21*(del\ldel);


ct = [ct1


ct2];


dt11 = v12*(r3\r2)/v21;


dt21 = d21/v21;


dd1 = [dt11


dt21];


%


rt = dd1*dd1’ - [gamma^2*eye(m2) zeros(m2,p2)


zeros(p2,m2) zeros(p2,p2)];
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%con_rt = cond(rt)


ay = at - bt1*dd1’*(rt\ct);


cy = bt1*bt1’ - bt1*dd1’*(rt\dd1)*bt1’;


%if norm(cy)<sqrt(eps)


% cy = zeros(n);


%end


%


% Solution of Y-Riccati equation


%


[y,l,g,rr] = dare(at’,ct’,bt1*bt1’,rt,bt1*dd1’);


%[y,w,rcond,ferr] = ricdsolv(1,ay’,cy,ct’*(rt/ct));


% y = dricc(at’,ct’,bt1*bt1’,rt,bt1*dd1’);


%[y,l,g,rr] = dare(ay’,ct’,cy,rt);


%[rcon,ferr] = drcon(at’,ct’*(rt\ct),bt1*bt1’,y);


ycond = cndricd(ay’,cy,ct’*(rt\ct),y);


%rcon


%eig_y = eig(y)


%


% Accuracy test


%


%resy = y-at*y*at’-bt1*bt1’+(at*y*ct’+bt1*dd1’)*((rt+ct*y*ct’)\(at*y*ct’+bt1*dd1’)’);


%norm_resy = norm(resy)/norm(y)


%


st1 = dt11*dt11’ - gamma^2*eye(m2) + ct1*y*ct1’;


st2 = dt11*dt21’ + ct1*y*ct2’;


st3 = dt21*dt21’ + ct2*y*ct2’;


%con_st3 = cond(st3)


st = [st1 st2;st2’ st3];


del_st = st1-st2*(st3\st2’);


%eig_del_st=eig(del_st)


mt1 = bt1*dt11’ + at*y*ct1’;


mt2 = bt1*dt21’ + at*y*ct2’;


mt = [mt1 mt2];


%


%eig_at = eig(at-mt*(st\ct))


%


ak = at - (b2/v12)*(ct1 - (st2/st3)*ct2) - (mt2/st3)*ct2;


bk = (mt2/st3) - (b2/v12)*(st2/st3);


ck = -v12\(ct1 - (st2/st3)*ct2);


dk = -v12\(st2/st3);
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%


% Take into account D22 =/= 0


%


f = eye(m2) + dk*d22;


%con_f = cond(f)


ck = f\ck;


dk = f\dk;


ak = ak - bk*d22*ck;


bk = bk - bk*d22*dk;


%


P = ltisys(a,b,c,d);


K = ltisys(ak,bk,ck,dk);


cls = slft(P,K,p2,m2);


[al,bl,cl,dl] = ltiss(cls);
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%function [cond,Omega,Theta,Pi] = cndricd(A,C,D,X)


%CNDRICD Quantities related to the conditioning of the


% discrete-time matrix algebraic Riccati equation


%


% C - X + A’*X*inv(eye(n) + D*X)*A = 0.


%


% The condition number of Riccati equation is given by


%


% cond = norm([Theta*norm(A,’fro’), Omega*norm(C,’fro’),


% -Pi*norm(D,’fro’)])/norm(X,’fro’)


%


% where Omega, Theta and Pi are defined by


%


% Omega = inv(kron(Ac’,Ac’) - eye(n^2)),


% Theta = Omega*(kron(eye(n),Ac’*X) + kron(Ac’*X,eye(n))*W)


% Pi = Omega*kron(Ac’*X,Ac’*X), Ac = inv(eye(n) + D*X)*A


%


% and W is the vec-permutation matrix.


%


% RICCPACK, 28.02.2000


%


function [cond,Omega,Theta,Pi] = cndricd(A,C,D,X)


n = max(size(A));


nora = norm(A,’fro’);


norc = norm(C,’fro’);


nord = norm(D,’fro’);


Ac = (eye(n) + D*X)\A;


M = kron(Ac’,Ac’) - eye(n*n);


Omega = inv(M);


W = 0*eye(n*n);


for i = 1:n,


for j = 1:n,


W(j+(i-1)*n,i+(j-1)*n) = 1.;


end


end
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Theta = M\(kron(eye(n),Ac’*X) + kron(Ac’*X,eye(n))*W);


Pi = M\kron(Ac’*X,Ac’*X);


D1 = norc*Omega;


D2 = nora*Theta;


D3 = nord*Pi;


norx = norm(X,’fro’);


if norx > 0


cond = norm([D1, D2, -D3]) / norx;


else


cond = 0;


end
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