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Preface

Johannes Zawacki, my high school teacher, told us about Gödel’s sec-

ond theorem, on non-provability of consistency of mathematics within

mathematics. Bonmot of André Weil: Dieu existe parceque la Mathé-

matique est consistente, et le diable existe parceque nous ne pouvons

pas prouver cela – God exists since Mathematics is consistent, and the

devil exists since we cannot prove that.

The problem with 19th/20th century mathematical foundations,

clearly stated in Skolem 1919, is unbound infinitistic (non-constructive)

formal existential quantification.

In his 1973 Oberwolfach talk André Joyal sketched a categorical –

map based – version of the Gödel theorems. A categorical version of

the unrestricted non-constructive existential quantifier was still inher-

ent.

The consistency formula of set theory (and of arbitrary quantified

arithmetical theories), namely: not exists a proof code for (the code

of) false, can be introduced as a (primitive) recursive – Gödel 1931 –

free variable predicate:

“For all arithmetised proofs k : k does not prove (code of) false.”

Language restriction to the constructive (categorical) free-variables
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theory PR of primitive recursion or appropriate extensions opens the

possibility to circumvent the two Gödel’s incompleteness issues:

We discuss iterative map code evaluation in direction of (termina-

tion conditioned) soundness, and based on this, decidability of primi-

tive recursive predicates.

In combination with Gödel’s classical theorems this leads to un-

expected consequences, namely to consistency provability and logical

soundness for recursive descent theory πR : theory of primitive recur-

sion strengthened by an axiom schema of non-infinite descent, descent

in complexity of complexity controlled iterations like in particular (it-

erative) p. r.-map-code evaluation.

We show an antithesis to Weil’s above: Set theoretically God need

not to exist, since his – Bourbaki’s – Théorie des Ensembles is

inconsistent. The devil does not need to exist, since we can prove in-

side free-variables recursive mathematics this mathematics consistency

formula. By the same token God may exist.

Berlin, December 2018 M. Pfender
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Introduction

We fix constructive foundations for arithmetic on a map theoretical,

algorithmic level. In contrast to elementhood and quantification based

traditional foundations such as Principia Mathematica PM, Zermelo-

Fraenkel set theory ZF, or v. Neumann-Gödel-Bernays set theory

NGB, our fundamental primitive recursive theory PR has as its basic

“undefined” (not further defined) terms just terms for objects and

maps. On that language level it is variable free, and it is free from

formal quantification on individuals like numbers or number pairs.

Theory PR is strongly finitistic with only bound existential quan-

tification, in the sense of Skolem 1919/1970, p. 153.1

PR is a formal, combinatorial category with cartesian i. e. universal

product and a natural numbers object (NNO) N, a p. r. cartesian

category, cf. Romàn 1989.

The NNO N admits iteration of endo maps and the full schema

1 “Was ich nun in dieser Abhandlung zu zeigen wünsche ist folgendes:

Faßt man die allgemeinen Sätze der Arithmetik als Funktionalbehauptungen

auf, und basiert man sich auf der rekurrierenden Denkweise, so läßt sich

diese Wissenschaft in folgerichtiger Weise ohne Anwendung der Russel-

Whitehead’schen Begriffe “always” und “sometimes” begründen.”

9



10 Introduction

of primitive recursion. Such NNO has been introduced in categorical

terms by Freyd 1972, on the basis of the NNO of Lawvere 1964.

We remain on the purely syntactical level of this categorical theory

and later extensions: no formal semantics necessary into an outside,

non-combinatorial world, cf. Hilbert’s formalistic program.

Fundamental (categorical) p. r. theory PR is developped from the

endomap iteration scheme (§) of Eilenberg/Elgot 1970. We take

as additional axiom Freyd’s uniqueness of the initialised iterated

endo map. This gives the full schema of primitive recursion including

uniqueness of p. r. maps defined by that scheme.

Into our variable-free setting are introduced free variables, formally

interpreted as names for identity and projection maps. As a conse-

quence, we have in the present context ‘free variable’ as a defined

notion. We have object and map constants such as terminal object,

NNO, zero constant and successor map, and use free metavariables for

objects and for maps.

Fundamental arithmetic is further developped along Goodstein’s

1971 Free Variables Arithmetic whose uniqueness rules are derived as

theorems of categorical theory PR, with its “eliminable” notion of free

variable. This gives the expected structure theorem for algebra and

order on NNO N. “On the way”, via Goodstein’s truncated subtrac-

tion and his commutativity of the maximum function, we obtain the

equality definability theorem: If predicative equality of two p. r. maps

is derivably true, then map equality between these maps is derivable.

The game is enriched by an (embedding, hence conservative) exten-

sion of theory PR by abstraction of predicates into new (sub)objects.

This enrichment makes emerging theory PRa = PR + (abstr) more
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comfortable, in direction to set theory with its sets and subsets, called

sets of emerging theory PRa, of primitive recursion with predicate ab-

straction.

PRa has a universal object X, of all internal numerals and (nested)

pairs of internal numerals as well as two-element set 2 = {0, 1} ⊂ N.
For the rôle of (2-valued) boolean truth algebra we add2 formally

an extra truth object 2 with basic truth value true : 1 → 2 and basic

binary logic operator r = αr β : 2× 2→ 2 (α but not β).

Theory PR is extended this way into a boolean cartesian p. r.

theory named PR2. It has object 2 as additional basic object, and

has constants false, true : 1→ 2, and all (boolean) operators making

2 into a 2-valued boolean algebra.

Boolean p. r. theory PR2 is extended into boolean p. r. constructive

set theory S = PR2+(abstr) with predicate-into-subobject abstraction

in the same way as fundamental p. r. theory PR has been extended

into p. r. theory PRa = PR+ (abstr) with PR-predicate abstraction.

Only – formal – difference: PR2 predicates (to be abstracted) are

PR2 maps χ : A → 2, whereas PR predicates are special PR maps

χ : A→ N.

Over (extended) theory S is constructed a theory Ŝ of partial p. r.

maps3 with half-terminal diagonal symmetric monoidal structure in

the sense of Budach/Hoehncke 1975; µ-recursive maps and while

loop programs turn out to be just partial p. r. maps; in particular map

code evaluation will be such a (formally) partial map.

The crucial problem with these formally partial recursive maps is

2 suggestion of J. Sablatnig
3 specialising the Korrespondenzen of Brinkmann/Puppe 1969
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termination. A special class of non-p. r. recursive maps whose non-

termination is excluded by axiom, is given by Complexity Controlled

Iteration (“CCI”).

Extra axiom (π), of non-infinite descent of CCI’s, constitutes it-

erative descent theory πR over p. r. theory Ŝ of partial p. r. maps.

Descent theory πR is introduced mainly as a framework for evalua-

tion, of S map codes on suitable arguments.

Evaluation is defined as a CCI with complexity values descending

in linearily ordered set, ordinal (semiring) N[ω] of polynomes in one

indeterminate ω intended to take (arbitrarily) big values.

Since theories (PR and) S are formally free of variables and quan-

tification, we code (gödelise) just maps f : A → B, into natural

numbers map code sets, with p. r. enumerated internal, arithmetised

notion of equality ‘=̌’.

Map codes of theory S are evaluated on universal set X2 ⊃ X

of S, of internal truth values, numerals as well as (nested) pairs of

these. Evaluation is defined as a complexity controlled iteration of a

p. r. evaluation step (on pairs of map codes and arguments) “until”

map complexity 0 is reached in left component as well as, by this,

evaluation result in right component.

Evaluation turns internally equal map codes pfq =̌ pgq of theory S

into S predicatively equal maps. This termination-conditioned sound-

ness is arithmetically central.

The strengthened frame πR – strengthened over theory Ŝ of par-

tial p. r. maps – derives free-variable consistency predicate ConS for

theory S and relative, S-to-πR evaluation soundness, from termina-

tion-conditioned soundness of S.
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Logically central is decision by theory πR of each p. r. predicate

χ, essentially via p. r. enumerative race for a (first) counterexample

versus a (first) S proof index k, ProvS(k, pχq ). Well-definedness of

predicate decision follows from relative soundness. Since consistency

formulae Con of “all” theories can be expressed as (free variable) p. r.

predicates, this leads to:

1. Self-consistency of iterative descent theory πR : Consistency deriva-

tion πR ` ConπR of theory πR, genuine subsystem of set theory.

2. Soundness and ω-completeness of theory πR.

In Appendix A we resolve Ackermann’s double recursive function

Ψ = Ψ(m,n) into a complexity controlled while loop, not infinitely

looping within theory πR.

Ackermann has shown by this example that there are number the-

oretic “functions” which are recursive but not primitive recursive –

not “recursive” in Gödel’s original sense.

In Appendix B we show that (already a special instance of) axiom

of Choice AC is inconsistent over (categorical) recursion theory, and

hence in particular that classical set theory is (just) inconsistent.
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Chapter 1

Cartesian language

We develop from scratch the free-variables “but” categorial language of

cartesian products, possibly nested, cartesian products of fundamental

object 1, one-element set, and natural numbers object “NNO”N. NNO

N comes with zero map 0 : 1→ N and successor (endo) map s : N→
N.

We define/interpret free variables as identity maps resp. left or

right projections – possibly nested – out of cartesian products, onto

their factors. Within the axioms for cartesian theories (bearing on

objects and maps) we specify use and interpretation of these free vari-

ables which can be seen as components in terms of Linear Algebra.12

A special rôle is played by terminal object 1. It works as the

empty cartesian product N0, comes with a (unique) “projection” map

Π : A → 1 for each object A, and is the domain object for con-

1K. Polthier
2in subsection 3 we show on the example of a distributive law how to transform

a free-variables equation into a variable-free map equation.

17



18 Cartesian language

crete “elements” a : 1→ A of A, in particular for (concrete) numbers

n : 1→ N. We turn to the formal development of the cartesian theory

CA generated over the NNO 1
0−→ N

s−→ N.

1.1 Fundamental object language symbols

The set of fundamental symbols of cartesian language CA is

{1,N,×, 0, s, id, ◦,Π, `, r}, and equality sign ‘=’

1 is the one-element object, N the Natural Numbers Object, NNO,

of theories CA and PR to come, × the cartesian product of objects

and of maps. 0 is the zero constant 0 : 1→ N, s is the “fundamental”

successor function s : N→ N to formalise counting.

Identity is the family of identity maps to all objects, these objects

obtained out of objects 1 and N by cartesian product ×;

◦ is map composition, occasionally replaced by concatenation, Π

symbolises the family of terminal maps into object 1, ` and r are left

resp. right projections out of cartesian product A×B onto factors A

and B respectively.

Theory PR below – of primitive recursion – will come with an

additional symbol § for endomap iteration.3

1.2 Cartesian category axioms

We give here the axioms of cartesian categorical theory CA in a fully

formal way using Gentzen bars for expression of metamathematical

3 Eilenberg/Elgot 1970
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inferences. The most characteristic such axioms are marked by a •

(no antecedent for this inference)

• Ax [N ]

{Obj 1, N}

one-element object and natural numbers object;

map 0 : 1→ N zero constant

map s : N→ N successor function

Obj A

Ax [ id ]

map idA = id : A→ A

identity map

map f

Ax [ reflexivity ]

f = f

map f, g;

f = g

Ax [ symmetry ]

g = f
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map f, g, h;

f = g; g = h

Ax [ transitivity ]

f = h

f : A→ B; g : B → C

• Ax [ ◦ ]

map (g f) = (g ◦ f) = g(f) : A→ C;

(g ◦ f) : A→ B → C

map composition

(outmost brackets may be omitted)

f, f̃ : A→ B; g : B → C; f = f̃

Ax [ ◦ sub ]

g ◦ f = g ◦ f̃ Leibniz’ substitutivity

Substitution of equals into same gives equals.

f : A→ B; g, g̃ : B → C; g = g̃

Ax [ sub ◦ ]

g ◦ f = g̃ ◦ f second Leibniz’ substitutivity

Substitution of same into equals gives equals.
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f : A→ B

Ax [ ◦ id ]

f ◦ id = f ◦ idA = f ;

id ◦ f = idB ◦ f = f

neutrality of identities to composition

It follows a first statement on the use of free variables.

f : A→ B;

var a ∈ A, a := idA
Lemma [ ◦ var ]

f(a) = f(idA) = by def f ◦ idA = f

free variable as identity,

f(a) ∈ B “dependent variable” q. e. d.

Next axiom is associativity of composition.

f : A→ B; g : B → C; h : C → D

var a ∈ A, a := idA
• Ax [ ass ◦ ]

(h ◦ g) ◦ f = h ◦ (g ◦ f) : A→ D

= h ◦ g ◦ f = h g f = h(g(f(a))))

Counting Remark: Up to insertion of (composition-neutral)

identities, the maps of category theory generated over s : N → N

are just the iterated s ◦ . . . ◦ s : N
s−→ . . .

s−→ N of the successor map, as

well as the
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numerals to be used in particular for metamathematical purpose.

(empty antecedent)

0 : 1→ N numeral

n : 1→ N numeral

(s ◦ n) : 1→ N numeral

example: 3 = (s ◦ (s ◦ (s ◦ 0)))

Cartesian structure

For each object is given a terminal map to object 1,

Obj A

Ax [ Π ]

map Π = ΠA : A→ 1

terminal map

f : A→ 1

• Ax [ !Π ]

f = ΠA

uniqueness

– equivalent to naturality of family Π given by (commutativity of)

every diagram of form
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A
g //

ΠA

��

=

B

ΠB

��
1

id // 1

Remark: This naturality axiom for family Π is not required for

half-terminal monoidal categories, introduced in Budach & Hoehncke

1975. Theory Ŝ to come of partially defined (primitive) recursive maps

is of that type.

Notation: Equality sign ‘=’ inserted into (part of) a diagram

means commutativity of (that part of) a diagram, equality of compo-

sition of arrows along both paths.

Obj A,B

• Ax [ Obj× ]

Obj (A×B)

(binary) cartesian product of objects.

Iteration gives nested products.

Outmost brackets may be omitted.

We introduce use of pairs of free variables as pairs of left and right

projections:
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Obj A,B

var a ∈ A, var b ∈ B
• Ax [ `, r ]

map ` = `A,B : A×B → A

map r = rA,B : A×B → B

left resp. right projection

a = `A,B, b = rA,B

variables as projections.

map f : C → A, g : C → B

• Ax [ indu ]

map (f, g) : C → A×B

induced map into product

` ◦ (f, g) = f, r ◦ (f, g) = g
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=

A

C

f

33

(f,g) //

g
++

A×B

`

OO

r

��

=

B

Godement’s diagram

uniqueness of horizontal arrow see below. This is the very beginning

of map-theoretic, element-free category theory.

f, f̃ : C → A; g, g̃ : C → B;

f = f̃ ; g = g̃

Ax [ sub( , ) ]

(f, g) = (f̃ , g̃)

compatibility of inducing with ‘=’

h : D → C, f : C → A, g : C → B

Ax [ distr ]

(f, g) ◦ h = (f ◦ h, g ◦ h) : D → (A×B)

distributivity of compositionn over forming

the induced map into product.

Use of free variable for induced map:
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var c ∈ C, c := idC
Lemma

` ◦ (f, g)(c) = ` ◦ (f(c), g(c)) = f(c),

r ◦ (f, g)(c) = r ◦ (f(c), g(c)) = g(c)

q. e. d.

h : C → (A×B)

Ax [ retr. pairing ]

(`A,B ◦ h, rA,B ◦ h) = h

pairing is retractive

(even isomorphic)

f : C → A; g : C → B;

h : C → (A×B);

`A,B ◦ h = f ; rA,B ◦ h = g

Lemma [ !( , ) ]

h = (f, g)

uniqueness of induced map
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Proof :

h = idA×B ◦ h
= (`A,B ◦ idA×B, rA,B ◦ idA×B) ◦ h [retr. pairing]

= (`A,B, rA,B) ◦ h
= (`A,B ◦ h, rA,B ◦ h) [distr]

= (f, g) : C → A×B [sub( , ) antecedent]

q. e. d.

Obj A,B

Lemma [ (`, r) ]

(`A,B, rA,B) = idA×B

Proof : uniqueness of induced into product A×B q. e. d.

f : A→ A′, g : B → B′

var a := `A,B, b := rA,B
Def [× maps ]

(f × g) = (f ◦ `, g ◦ r) : (A×B)→ (A′ ×B′)

f × g = (f × g)(a, b) = (f(a), g(b))

cartesian map product

f : A→ A′, g : B → B′,

[ unary × ]

(A× g) =def (idA × g) : A×B → A×B′

(f ×B) =def (f × idB) : A×B → A′ ×B
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map f : A→ A′, g : B → B′

Theorem [ nat`,r ]

` ◦ (f × g) = f ◦ `; r ◦ (f × g) = g ◦ r

naturality of projection families ` and r

Proof : Uniqueness of induced map into product A′×B′, consider

A
f //

=

A′

A×B

`

OO

f×g //

r

��

=

A′ ×B′

`

OO

r

��
B

g // B′

Cartesian map product diagram

q. e. d.

f : A→ A′, f ′ : A′ → A′′;

g : B → B′, g′ : B′ → B′′;

Theorem [× ◦ ]

idA × idB = idA×B : A×B → A×B

(f ′ ◦ f)× (g′ ◦ g) = (f ′ × g′) ◦ (f × g) :

(A×B)→ (A′′ ×B′′)

bifunctoriality of cartesian product
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Proof : Uniqueness of induced map into product A′′ ×B′′ in

A
f //

=

A′
f ′ //

=

A′′

(A×B)

`

OO

r

��

(f×g) //

((f ′ f)×(g′ g))

66
(A′ ×B′)

`

OO

r

��

(f ′×g′) // (A′′ ×B′′)

`

OO

r

��
B

g //

=

B′
g′ //

=

B′′

Cartesian bifunctoriality diagram

q. e. d.

f : A→ A′, g : B → B′

Corollary [× id ◦ ]

f × g = (f ×B′) ◦ (A× g)

= (A′ × g) ◦ (f ×B)

map product decomposition

A×B A×g //

f×g

$$

f×B

��

A×B′

f×B′

��

(∗)
=

(∗∗)
=

A′ ×B A′×g // A′ ×B′

map product decomposition diagram
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Proof :

(f ×B′) ◦ (A× g) = (f × idB′) ◦ (idA × g)

= (f ◦ idA)× (idB′ ◦ g) (by bifunctoriality)

= f × g (∗)

the latter by compatibility of ( , ) with equality, which entails com-

patibilityindcompatibility of × with equality.

Analogously

(A′ × g) ◦ (f ×B) = (idA′ × g) ◦ (f × idB)

= (idA′ ◦ f)× (f ◦ idB) (by bifunctoriality)

= f × g (∗∗)

q. e. d.

Distributivity Corollary [ Distr × ◦ ( , ) ]

f : C → A, g : C → B, f ′ : A→ A′, g′ : B → B′

(f ′ × g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g) : C → A′ ×B′

Proof :

(f ′ × g′) ◦ (f, g)

= (f ′ ◦ `A′,B′ , g′ ◦ rA′,B′) ◦ (f, g)

= (f ′ ◦ `A′,B′ ◦ (f, g), g′ ◦ rA′,B′ ◦ (f, g)) by Ax [ distr ]

= (f ′ ◦ (`A′,B′ ◦ (f, g)), g′ ◦ (rA′,B′ ◦ (f, g)))

= (f ′ ◦ f, g′ ◦ g) q. e. d.
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1.3 Interpretation of free variables

We start with a (“generic”) example of elimination of free variables

by their interpretation into (possibly nested) projections within a ring

R.

A distributive law a·(b+c) = a·b+a·c gets the map interpretation

a · (b+ c) = (a · b) + (a · c) :

R3 = by def R2 ×R = by def (R×R)×R→ R

with systematic interpretation of variables:

a := ` `, b := r `, c := r : R3 = (R×R)×R→ R

and infix writing of operations x op y : R × R → R prefix interpreted

as op ◦ (x, y), here

· ◦(a,+ ◦ (b, c)) = + ◦ (· ◦ (a, b), · ◦ (a, c)) : R3 → R

In form of a commuting diagram:

(R×R)×R
(a,(b,c))

(``,(r`,r))

~~

((a,b),(a,c))

((``,r`),(``,r))

""

(a,b+c)

��

(a·b,a·c)

!!

R× (R×R)

R×+

��

(R×R)× (R×R)

·× ·

��
R×R

·

''

R×R
+

vv
R
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An iterated map4 f § : A×N may be written in free-variables notation

as

f § = f §(a, n) = fn(a) : A×N→ A

with a : = ` : A×N→ A, and n : = r : A×N→ N

Systematic map interpretation of free-variables equations:

1. Extract the common codomain (domain of values), say B, of both

sides of the equation (this codomain may be implicit);

2. “Expand” operator priority into additional bracket pairs;

3. Transform infix into prefix notation on both sides of the equation;

4. Order the (finitely many) variables appearing in the equation, for

example lexically;

5. If these variables a1, a2, . . . , am range over the objectsA1, A2, . . . , Am,

then fix as common domain object (source of commuting diagram),

the object

A = A1 × A2 × . . .× Am =def (. . . ((A1 × A2)× . . .)× Am);

6. Interpret the variables as identities or (possibly nested) projections,

will say: replace, within the equation, all the occurences of a vari-

able by the corresponding – in general binary nested – projection;

7. Replace each symbol “ 0 ” by “ 0 ΠD ” where “D ” is the (common)

domain of (both sides) of the equation;

4see below
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8. Insert composition symbol ◦ between terms which are not bound

together by an induced map operator as in (f1, f2);

9. By the above, we have the following two-maps-cartesian-Product

rule, forth and back: For

a : = `A,B : (A×B)→ A, b : = rA,B : (A×B)→ B and f : A→ A′

as well as g : B → B′, the following identity holds:

(f × g)(a, b) = (f × g) ◦ (`A,B, rA,B)

= (f × g) ◦ id(A×B) = (f × g)

= (f ◦ `A,B, g ◦ rA,B)

= (f ◦ a, g ◦ b) = (f(a), g(b)) : A×B → A′ ×B′

10. For free variables a ∈ A, n ∈ N interpret the term fn(a) as the

map f §(a, n) : A × N → A, iterated of endomap f : A → A, see

next chapter.

These 10 interpretation steps transform a cartesian [a cartesian p. r.]

free-variables equation into a variable-free, categorical equation of the-

ory CA [and of PR to come]:

Elimination of (free) variables by their interpretation as pro-

jections, and vice versa: Introduction of free variables as names for

identities resp. projections. We allow for mixed notation too. All this,

for the time being, just in the context of cartesian theories.

All of our theories are free from classical, (axiomatic) formal un-

bound quantification.5 Free-variables equations are understood intu-

itively as universally quantified. But a free variable a ∈ A occurring

5 critizised by Skolem 1919
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only in the premise of an implication takes (in suitable context), the

meaning

for any given a ∈ A : premise (. . . a) =⇒ conclusion, i. e.

if exists a ∈ A s. t. premise (. . . a), then conclusion;

provided that (free) variable a ∈ A does not occur

in conclusion.



Chapter 2

Primitive Recursion

We introduce Gödel’s primitive recursion – called by him just recur-

sion1 –, beginning with the iteration schema in Eilenberg/Elgot

1970. We show the full schema of primitive recursion and uniqueness

of the NNO N within the categorical theory PR of primitive recursion

to be described in this chapter.

1later Ackermann found a recursive function which is not primitive recursive.

Cf. Appendix A. The same holds for evaluation of primitive recursive map codes

below.

35
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2.1 Iteration axioms added

f : A→ A (endomap), var a∈A, var n∈N
• Ax [ § ]

f § = f §(a, n) : A×N→ A (iterated);

f §(a, 0) := f §(idA, 0A) = f §(idA, 0 ΠA) = a = idA :

A→ A×N (anchoring);

f § ◦ (A× s) = f §(a, sn) = f ◦ f § = f(f §(a, n)) :

A×N→ A→ A (iteration step);

fn(a) := f §(a, n)

apply iteratively endomap f to initial argument a,

iterate n times.

A×N A×s //

f§

��

=

A×N

f§

��

A

(id,0)
<<

id
""

= (§)

A
f // A

Iteration diagram
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f : A→ B; g : B → B;

h := g§ (f × idN) : A×N→ B ×N→ B

Lemma [ FR ]

A×N A×s //

h

��

g§◦(f×N)

~~

A×N

h

��

g§◦(f×N)

~~

A

(idA,0)
;;

f ##

:= :=

B
g // B

commutes

Proof : Consider diagram

A
(idA,0A) //

f

��

(f,0A)

!!

f

..

A×N A×s //

f×N

��

f×s

##

=

(∗)
=

h

��

A×N

f×N

��

=

=

h

��

B
(idB ,0B)

//

idB

""

B ×N
B×s

//

g§

��

=

=

B ×N

g§

��
B

g // B

In particular equation (∗) holds by uniqueness of terminal map

A→ 1 : 0B f = 0 ΠB f = 0 ΠA = 0A and “then” by distributivity of ◦
over ( , ) q. e. d.
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f : A→ B; g : B → B; h : A×N→ B;

var a∈A, var n∈N;

h(a, 0) = f(a);

h(a, sn) = g h(a, n)

• Ax [ FR! ]

h = g§ (f × idN) i. e.

h(a, n) = gn(f(a)) : A×N→ B :

Freyd’s uniqueness of the iterated endomap g

initialised by map f

[“g§ (f × idN) does the job”, see [ FR ] above.]

f : A→ A; h : A×N→ A

var a∈A, var n∈N;

h(a, 0) = a = idA(a);

h(a, sn) = f h(a, n)

Corollary [ §! ]

h = f §

uniqueness of “simply” iterated f §
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f, f̃ : A→ A; f = f̃

Lemma [ § = ]

f § = f̃ § : A×N→ A

compatibility of iteration § with equality

Proof :

f̃ = f

Ax [§], [sub ◦]

f̃ §(a, 0) = idA

f̃ §(a, s n) = f̃ ◦ f̃ §(a, n) = f ◦ f̃ §(a, n)

and – the latter postcedent –

f̃ §(a, 0) = idA

f̃ §(a, s n) = f ◦ f̃ §(a, n)

[ §! ]

f̃ § = f § q. e. d.

2.2 Full schema of primitive recursion

Already for definition and characterisation of multiplication and more-

over for proof of the laws of Arithmetic, the following full schema

(pr) of primitive recursion is needed:
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g = g(a) : A→ B

h = h((a, n), b) : (A×N)×B → B

Theorem (pr)

f = f(a, n) : A×N→ B s.t.

(anchor) f(a, 0) = g(a), and

(step) f(a, sn) = h((a, n), f(a, n)).

f =: pr[g, h]

+

(pr!) uniqueness of f to satisfy

these (anchor) and (step) equations.

Interpretation: General primitive recursive map f = f(a, b) ini-

tialised by a map g = g(a) and iteratively extended using a step map

h = h((a, n), b) which depends on previous value b but (possibly) also

from initial argument a ∈ A as well as from running recursion param-

eter n ∈ N.

Schema (pr) without use of free variables:2

2 see Freyd 1972 and (then) Pfender, Kröplin, and Pape 1994
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g : A→ B

h : (A×N)×B → B

(pr)

pr[g, h] : = f : A×N→ B

f(idA, 0) = g : A→ B

f (idA × s) = h (idA×N, f) :

(A×N)→ (A×N)×B → B

(pr!) : f unique.

Schema (pr) is a consequence of iteration schema Ax [§] and unique-

ness of the initialised iterated h, this taken as axiom (FR!), commut-

ing diagram3

A×N A×s //

h

��

g§◦(f×N)

��

A×N

h

��

g§◦(f×N)

��

A

(idA,0)
;;

f ##
B

g // B

Remarks:

• Full schema (pr) of primitive recursion is an axiom in the clas-

sical theory of primitive recursion, subsystem of any classical

(gödelian) arithmetical theory T.

3 Freyd 1972
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• Free-Variables Arithmetics of the natural numbers N, the in-

tegers Z, and the rationals Q can be based on the axioms of

the cartesian theory PR of primitive recursion as defined in the

above.

• Goodstein’s4 uniqueness axioms U1 to U4 – basic for his Free-

Variables Arithmetics – are theorems of PR.

• In “Begründung der elementären Arithmetik durch die rekur-

rierende Denkweise ohne die Anwendung scheinbarer Veränder-

lichen mit unendlichem Ausdehnungsbereich”,

Skolem 1919 exhibits the strongly finitistic logical kernel of

Principia Mathematica PM, and forshadows in particular Good-

stein 1971.

2.3 Proof of full schema

Proof of schema (pr) out of [§] and (FR!) : 5

Construction of the map f = pr [ g, h ] : A × N → B out of data

g : A→ B (initialisation) and h : (A×N)×B → B (iteration step):

Wanted f : A×N→ B is to satisfy (init) und (step) given as the

two commuting diagrams

4Goodstein 1971
5 this proof and everything before has been verified by A. Cloete and G. Myrach

within the proof verification system HOL light
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A×N

f

��

A

(id,0)
;;

g
##

=

B

(init)

(a, n) � //
_

��

(a, sn)
_

��

A×N A×s //

(id,f)

��

=

A×N

f

��
(A×N)×B h // B f(a, sn)

((a, n), f(a, n)) � // h((a, n), f(a, n))

(step)

With ĝ := ((idA, 0), g) and ĥ := ((A× s) ◦ `, h) we get by (FR!) a

uniquely determined map

k = (kl, kr) : A×N→ (A×N)×B

satisfying
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A×N A×s //

k (kl,kr)

��

=

A×N

k (kl,kr)

��

A

(id,0)
88

ĝ &&

=

(A×N)×B ĥ

((A×s)◦`,h)
// (A×N)×B

i. e.

k ◦ (idA, 0) = ĝ and

k ◦ (A× s) = ĥ ◦ k

[It will turn out that k = (idA×N, f) for wanted map f : A×N→ B.]

For our unique k consider first its left component kl = ` ◦ k :

A×N→ A×N unique – by (FR!) – in

A×N A×s //

k

��

=

kl id

��

A×N

k

��

kl id

��

A

(id,0)

99

ĝ
%%

=

(id,0)

##

(A×N)×B ĥ

((A×s)◦`,h)
//

`

��

=

(A×N)×B

`

��
A×N A×s // A×N
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We have

` ◦ k ◦ (idA, 0) = ` ◦ ĝ = (idA, 0) and

` ◦ k ◦ (A× s) = ` ◦ ĥ ◦ k = (A× s) ◦ ` ◦ k

Since these two equations hold likewise for idA×N instead of ` ◦ k,
equation ` ◦ k = idA×N follows by uniqueness (FR!) of such a map.

Taking now f : = r◦k : A×N→ B we have the following diagram

for this (unique) right component of k : A×N→ (A×N)×B :

A×N A×s //

k

��

=

f

��

A×N

k

��

f

��

A

(id,0)

99

((id,0),g)

ĝ

%%

=

g

$$

(A×N)×B ĥ

((A×s)◦`,h)
//

r

��

=

h

))

(A×N)×B

r

��
B

=

B
Obtain

k = (` ◦ k, r ◦ k) = (idA×N, f)

f ◦ (idA, 0) = r ◦ k ◦ (idA, 0) = r ◦ ĝ = g and

f ◦ (A× s) = r ◦ k ◦ (A× s) = r ◦ ĥ ◦ k
= h ◦ k = h ◦ (idA×N, f)

So this map f : A×N→ B is available to fullfill the requirements of

pr [ g, h ] : A×N→ B.
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Uniqueness proof for such map f : Let f ′ be a map assumed

likewise to satisfy equations (init) and (step).

Then take k′ := (idA×N, f
′) : A×N→ (A×N)→ B and calculate:

k′ ◦ (idA, 0) = (idA×N, f
′) ◦ (idA, 0)

= ((idA, 0), f ′ ◦ (idA, 0))

= ((idA, 0), g) = ĝ as well as

k′ ◦ (A× s) = (idA×N, f
′) ◦ (A× s)

= ((A× s), f ′ ◦ (A× s))

= ((A× s), h) = ĥ ◦ k′

Since by (FR!) k above is the unique map to satisfy the equations

above, we have necessarily k′ = k and hence f ′ = r ◦ k′ = r ◦ k = f :

A×N→ B q. e. d.
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2.4 Program version of full schema

g = g(a) : A→ B (init)

h = h((a, n), b) : (A×N)×B → B (step)

(pr prog)

function f = pr[g, h]

= pr[g, h](a, n) : A×N→ B :

var b ∈ B

b := g(a);

for j := 0 to n− 1 do{
b := h((a, j), b)

od

result f(a, n) := b

Dangerous bound: Recursion parameter j ∈ [0, n − 1] in a for

loop given by full schema may be used within this loop, but not modi-

fied in the loop body, as for example by a statement of form j := j+2.

Same for the passive parameter a ∈ A.

Examples of use of the full schema, in particular of dependence

of recursion step from passive parameter a ∈ A and/or from recursion

parameter n ∈ N will be given at several occasions in the below.

Mentioned is here the recursive definition of the faculty function

fac = fac(n) = n! : N→ N.
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2.5 Uniqueness of the NNO

Category theorists like constructions which are uniquely given by their

defining properties, unique up to natural isomorphisms, or – functorial

constructions – up to natural equivalence. For the (binary) cartesian

product with its projection families as natural map families, this is

true by considerations earlier above, same for terminal object 1 and

the family Π : A→ 1 of terminal maps (projections).

Now what about the Natural Numbers Object

1
0−→ N

s−→ N ?

This diagram has the property wanted, property which should be

called categoricity: by its Lawvere existence and uniqueness prop-

erties below, it is just the initial diagram

1
0 // N

s // N

of form

1
a0 // A

f // A

So purely map theoretically the notion of an NNO is categoric:

Within a cartesian map theory NNO 1
0 // N

s // N is unique up

to natural isomorphism.

Specialised, sequences definition of NNO: Lawvere defines

the NNO N as follows:
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a0 : 1→ A a point

f : A→ A an endo map to be iterated

(NNOFWL)

a : N→ A resulting sequence

a ◦ 0 = a0 : 1→ A start of sequence

a ◦ s = f ◦ a : N→ A progress of sequence

+ uniqueness of such sequence a : N→ A

in diagram form:

N
s //

a=

��

=

N

a

��

1

0
??

a0 ��
A

f // A

Lawvere NNO diagram

We show that this early NNO scheme is obtained from Freyd’s

scheme.

NNO Lemma: For a0 : 1 → A and f : A → A (antecedent in

Lawvere’s NNO scheme) the map

a =def f § ◦ (a0, idN) : N→ A×N f§−→ A

uniquely makes the above diagram commute.

Proof: Consider the following diagram:
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N

a

��

s //

(a0,id)

��

N

(a0,id)

��
a

��

1

0

<<

(a0,0) //

a0

""

A×N A×s //

f§

��

A×N

f§

��
A

f // A

This diagram commutes with a := f §◦(a0, idN), unique a as is seen

by extending the diagram with isomorphism

r1,N : 1×N→ N, inverse (ΠN, idN)

into commuting diagram

1×N 1×s //
OO

∼=
r1,N

�� a0×N

		

1×NOO

∼=
r1,N

�� a0×N

		

N

h

��

s //

(a0,id)

��

N

h

��

(a0,id)

��
1

(id,0)

EE

0

<<

(a0,0) //

a0

""

A×N A×s //

f§

��

A×N

f§

��
A

f // A

Freyd to Lawvere NNO specialisation diagram

h = h(n) : N → A is to be another sequence assumed to fullfill

the postcedent above in place of a : N → A. By uniqueness of the



Hilbert’s infinite hotel 51

initialised iterated f § ◦ (a0 × idN) it must equal

a = f § ◦ (a0, idN) : N→ A q. e. d.

Remark: Conversely Lawvere’s NNO is said to have the prop-

erties of an NNO in Freyd’s version quoted above. But for his

proof of this assertion Freyd relies on internal hom structure – ax-

iomatic exponentiation BA – coming with axiomatic internal evalu-

ation εA,B : BA × A → B which is available in his context of an

Elementary (higher order) Topos, not available in present context.

In RCF 3 in the References it is shown that the initial cartesian

closed theory with NNO admits code self-evaluation and hence is

inconsistent. This is one motivation for not considering here higher or-

der recursion theory. The other motivation is simplicity: the Gödelian

case is built on first-order in Smorynski 1977, no power sets needed.

2.6 Hilbert’s infinite hotel

N ∼= 1+N

N is isomorphic to the coproduct of 1 and N

paradoxon on infinity

“But” maps a0 : 1 → A, f : N → A induce a unique map (a0|f) :

N→ A “out of the sum/coproduct”
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1

0

��

a0

��
1

0 // N oo
s

N such that N
(a0|f) //

=

=

A

N

s

OO

f

JJ

[ Coproducts are universal, hence unique up to isomorphism.]

We prove a more general, parametrised version of

coproduct property of 1
0 // N oo

s
N

namely: For A an arbitrary (“parameter”) object A

A×N ∼= A× (1+N) ∼= A+ (A×N)

[∼= (A× 1) + (A×N) ]

Proof: We obtain, via full schema (pr) the following coproduct di-

agram where a := idA : A→ A, and “inducing” maps g : A→ B, h :

A×N→ B are given. They induce a unique map f = (g|h) : A×N
out of the coproduct A×N, what we have to show:

A

(a,0)

��

g

  
A×N f

(g|h)
//

=

=

B

A×N

a×s

OO

h

>>
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Map

f = (g|h) =def pr[g, h ◦ `] : A×N→ B

is the unique commutative fill-in into this coproduct diagram, since by

full scheme (pr) of primitive recursion

f(a, 0) = g(a) : A→ B

f(a, sn) = h(a, n) = (h ◦ `)((a, n), f(a, n)) : (A×N)→ B

Infinite-hotel interpretation:

Replace within the latter coproduct diagram object B by A ×N,
component map g by (a0, 0) : A → A × N and h = idA×N , and get

special “hotel” coproduct diagram

A

(a,0)

��

(a0.0)

""
A×N f

((a0,0)|idA×N)
//

=

=

A×N

A×N

a×s

OO

idA×N

==

Hotel N has an infinite number n ∈ N of rooms. Each room n is

occupied by a guest (a, n) ∈ A×N.
A new guest a0 ∈ A arrives at that fully occupied hotel. Since the

hotel is infinite, the manager has (at least) 2 possibilies to host all

present guests and the new one:
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• the actual -infiniteness possibility: per simultaneous message he

asks all present guests to change to respective next room:

(a, n) 7→ (a, n + 1), and hosts simultaneously the new guest a0

in room 0, a0 7→ (a0, 0) ∈ A×N.

• the potential -infiniteness possibility: The hotel has potential for

an infinity of rooms (new rooms can be aquired in time or even

constructed). All rooms the manager has at his disposal at

present are occupied. A new guest arrives. The manager travels

along all of these rooms and aquires at his disposal a next room.

Then he travels backwards and asks subsequently the finitely

many present guests to move “upwards”, first the guest with

highest room number, and eventually allocates room 0 to the

arriving guest.

• the latter possibility is realised mathematically by interpretation

of A×N as the – (one-sided) potentially infinite – tape of a TUR-

ING machine, and the hotel manager as the (processing) head

of a (very simple) such machine. A is the tape alphabet of the

TURING machine. In computer science this simple TURING

machine is – works as – a (potentially infinite) STACK.



Chapter 3

Algebra and order on the

NNO

In “Development of Mathematical Logic” (Logos Press 1971) R. L.

Goodstein gives four basic uniqueness-rules for free-variable Arith-

metics. We show here these rules for theory PR and that these four

rules are sufficient for proving the commutative and associative laws

for multiplication and the distributive law, for addition as well as for

truncated subtraction ar n noted a .− n : N×N→ N by Goodstein.

For our evaluation and consistency considerations below we need

from present chapter equality predicate [a
.
= b] : N×N→ N and that

this predicate defines map equality, see equality definability scheme.

This scheme is a consequence of (Goodstein’s) max commutativity

which is difficult to show and which you may take on faith.

55
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3.1 Free-variable NNO Algebra

Basic GA1 operations are addition ‘ + ’, predecessor ‘ pre ’, truncated

subtraction ‘r ’ [in Goodstein predecessor written pren : = n .− 1],

as well as multiplication ‘ · ’.

We2 include into Goodstein’s uniqueness rules a “passive parame-

ter” a. These extended rules are derivable by use of Freyd’s uniqueness

theorem (pr!), part of full scheme (pr) of primitive recursion which he

deduces from his uniqueness (FR!) of the initialised iterated.

Goodstein’s rules parametrised

Let f, g : A × N → N be maps, s : N → N the successor map

n 7→ n+1 and pre : N→ N the predecessor map, here usually written

as n 7→ nr 1.

Then Goodstein’s rules read:

f(a, sn) = f(a, n) : A×N→ B

U1

f(a, n) = f(a, 0) : A×N→ B

no change by application of successor

infers equality with value at zero for f

1Goodstein Arithmetic
2Sandra Andrasek and the author
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f(a, sn) = s f(a, n) : A×N→ N

U2

f(a, n) = f(a, 0) + n : A×N→ N

accumulation of successors into +n

f(a, sn) = pre f(a, n) : A×N→ N

U3

f(a, n) = f(a, 0) r n : A×N→ N

accumulation of predecessors into rn

f(a, 0) = g(a, 0) : A→ N

f(a, sn) = g(a, sn) : A×N→ N

U4

f(a, n) = g(a, n) : A×N→ N

uniqueness of map definition by case-distinction

Rule U4 is nothing else than uniqueness of the induced map out of

the sum A × N ∼= (A × 1) + (A × N), this sum canonically realised

via injections ι = (idA, 0) : A → A ×N as well as – right injection –

κ = idA × s : A×N→ A×N.

Proof of these four rules is straight forward for theory PR us-

ing Freyd’s uniqueness (FR!) and uniqueness clause (pr!) of the full

scheme of primitive recursion respectively, as follows:

For scheme U1 consider, with free variable a : = ` : A × N → A,
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A×N A×s //

f

��

=

A×N

f

��

A

(a,0)
;;

f(a,0) ##

=

N
id // N

(FR!)

f(a, n) = f = id§
N
◦ (f(a, 0)×N)

= `N,N ◦ (f(a, 0)×N) : A×N→ N×N→ N

= f(a, 0) ◦ `A,N : A×N→ A→ N

= f(a, 0) : A×N A×ΠN−−−−→ A× 1 A×0−−→ A×N f−→ N

Proof of U2 of “summing up successors”:

A×N

f(a,0) + sn

oo

A×s //

f f(a,0)+n

��

A×N

f f(a,0)+n

��

A×N

(a,0)
99

f(a,0)
%%
N

s // N

pentagon commutative for both f, f(a, 0) + n

(FR!)

f(a, n) = f(a, 0) + n

Proof of U3 is exactly analogous to the above: Replace in state-

ment of U2 and its proof stepwise augmentation f(a, sn) = s f(a, n)
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by stepwise descent

f(a, sn) = f(a, n) r 1 = by def pre f(a, n)

On right hand side replace successor s : N → N by predecessor pre :

N → N which in turn is defined by the full scheme (pr) of primitive

recursion. In postcedent replace iterated successor a+n : N×N→ N

by iterated predecessor ar n : N×N→ N.

[In Goodstein’s original, pre(n) = n r 1 : N → N is a basic,

“undefined” map constant]

We give a direct proof of U4 :

We tailor first this scheme for convenient use of “full” uniqueness

scheme (pr!) as follows:

f = f(a, n), f ′ = f ′(a, n) : A×N→ B

f(a, 0) = f ′(a, 0) : A→ B

f(a, sn) = f ′(a, sn) : A×N→ A×N→ B

U4

f = f ′ : A×N→ B.

Choose the anchor map

g = g(a) : = f(a, 0) = f ′(a, 0) :

A→ A×N→ B

and the step map

h = h((a, n), b) : = f(a, sn) = f ′(a, sn) :

(A×N)×B `−→ A×N→ B
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We obtain via the full scheme (pr!) of primitive recursion:

f(a, 0) = g(a) = f ′(a, 0) (anchor hypothesis)

f(a, sn) = h((a, n), f(a, n)) = f ′(a, sn) (step hypothesis)

(pr!)

f = pr[ g, h] = f ′ : A×N→ B q. e. d.

Combination of reflexivity, symmetry, and transitivity of equal-

ity f = g : A → B between maps with the defining equations for

the fundamental operations and with rules U1 to U4 above, defines

categorical Goodstein’s free-variables Arithmetic which we name

Goodstein Arithmetic GA.

Arithmetical equations

We quote here – with passive parameters made visible – Goodstein’s

arithmetical equations together with his proofs.

The first equation is (Goodstein’s statement numbers)

Lemma:

(ar n) r 1 =GA (ar 1) r n : N×N→ N (1.)

a ∈ N free, “passive” a : = ` : A×N→ A

n ∈ N free, recursive, n : = r : A×N→ N

Proof:
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(ar sn) r 1 = by def ((ar n) r 1) r 1

U3

(ar n) r 1 = ((ar 0) r 1) r n

= by def (ar 1) r n : N×N→ N q. e. d.

Next equation is

stepwise simplification rule for truncated subtraction:

s ar s b = ar b : N×N→ N (1.1)

Proof:

s ar s s b = by def (s ar s b) r 1

U3

s ar s b = (s ar s 0) r b

= by def ar b : N×N→ N

the latter by definition of the predecessor “r1” q. e. d.

Lemma: ar a = 0 : N→ N (1.2)

Proof:

s ar s a = ar a

(by stepwise simplification 1.1 above)

U1

ar a = 0 r 0 = by def 0 q. e. d.
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Lemma: 0 r a = 0 : N→ N (1.3)

Proof:

0 r s a = by def (0 r a) r 1

= (0 r 1) r a (by (1.) above)

= 0 r a : N→ N

U1

0 r a = 0 r 0 = 0 : N→ N q. e. d.

Proposition:

ar (b+ c) = (ar b) r c : (N×N)×N→ N (1.31)

Proof:

ar (b+ s c) = by def ar s (b+ c) (definition of + )

= by def (ar (b+ c)) r 1 (definition of r )

U3

ar (b+ c) = (ar (b+ 0)) r c = by def (ar b) r c

q. e. d.

Full Simplification:

(a+ n) r (b+ n) = ar b : N2 ×N→ N (1.4)

Proof:
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(a+ sn) r (b+ sn)

= by def s (a+ n) r s (b+ n) = (a+ n) r (b+ n)

by substitution – realised essentially as composition

– of (a+ n) into a and (a+ n) into b within

stepwise simplification equation 1.1 above

U1

(a+ n) r (b+ n) = (a+ 0) r (b+ 0) = by def ar b.

Lemma: 0 + n = n [ = by def n+ 0 ] : N→ N (2)

Proof:

idN s a = s a

U2

idN(a) = idN(0) + a

and hence

a = idN(a) = idN(0) + a = 0 + a : N→ N q. e. d.

Lemma: a+ s b = s a+ b : N×N→ B (2.1)

Proof by U2 as follows, with free variable b : = r : N2 → N as

recursion variable:

For f = f(a, b) =def a+ s b : N×N→ N :
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f(a, s b) = by def a+ s s b = s(a+ s b) = s f(a, b) : N2 → N

U2

f(a, b) = a+ s b = f(a, 0) + b

= by def (a+ s 0) + b = by def s a+ b q. e. d.

Theorem:

a+ b = b+ a : N×N→ N (2.2)

a : = ` : N2 → N

b : = r : N2 → N

Proof:

a+ 0 = by def a = 0 + a by (2) above

a+ s b = s a+ b by (2.1) above (and symmetry of equality)

U4

a+ b = by def f(a, b) = g(a, b)

= by def s a+ b : N2 → N q. e. d.

This gives also sort of permutability for truncated subtraction:

(ar b) r c = (ar c) r b : (N×N)×N→ N

Proof:

(ar b) r c = ar (b+ c) by (1.31) above

= ar (c+ b) by commutativity of addition

= (ar c) r b again by (1.31) q. e. d.
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From full simplification (1.4) and left neutrality of zero (2) above

with respect to addition we get immediately “one-term” simplification

Lemma:

(a+ n) r n = (a+ n) r (0 + n) = a : N×N→ N (2.3)

Associativity of Addition

(a+ b) + c = a+ (b+ c) : (N×N)×N→ N

Proof: for f((a, b), c) =def a+ (b+ c) : N2 ×N :

f((a, b), s c) = a+ (b+ s c) = a+ s(b+ c)

= s(a+ (b+ c)) = s f((a, b), c)

U2

a+ (b+ c) = f((a, b), c) = f((a, b), 0) + c

= by def (a+ (b+ 0)) + c = (a+ b) + c

q. e. d.

Recall p. r. Definition of Multiplication:

a · 0 = 0 : N→ N

a · (n+ 1) = (a · n) + a

For this operation we have not only annihilation by zero from the right

but also

Left zero-Annihilation 0 · n = 0 : N→ N.
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Proof:

0 · sn = (0 · n) + 0 = 0 · n
U1

0 · n = 0 · 0 = 0 q. e. d.

For proving the other equational laws making the natural numbers

object N into a unitary commutative semiring with in addition trun-

cated subtraction introduced above Goodstein’s derived scheme V4

below is helpfull.

For proof of that scheme we rely on

Commutativity of maximum operation:3

max(a, b) =def a+ (br a)

= b+ (ar b) = by def max(b, a) : N×N→ N

Proof4: As a first step we show

Diagonal Reduction Lemma for maximum:

max(a, b) = max(ar 1, br 1) + sgn(a+ b)

Proof of Lemma: first we show equation

max(a, s b) = max(ar 1, s br 1) + sgn(a+ s b) (1)

3in Goodstein 1964 this is taken as an axiom
4Goodstein 1971 adapted by G. Myrach
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[where sgn(0) = 0, sgn(sn) = 1] as follows:

max(0 r 1, s b) = s b

= max(0 r 1, s br 1) + sgn(0 + s b) (2)

and

max(s a, s b) = s a+ (s br s a)

= s a+ (br a) = s(a+ (br a))

= s max(a, b) = max(a, b) + 1

= max(s ar 1, s br 1) + sgn(s a+ s b) (3)

From (2) and (3) follows equation (1) by uniqueness rule U4.

Furthermore

max(a, 0) = a = (ar 1) + sgn(a)

= max(ar 1, 0 r 1) + sgn(a+ 0) (4)

Together with (1) above this gives again by U4 the Diagonal Reduc-

tion Lemma.

From this we get immediately by substitution

Opposite Diagonal Reduction Lemma for maximum:

max(b, a) = max(br 1, ar 1) + sgn(b+ a)

= max(br 1, ar 1) + sgn(a+ b) q. e. d.
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Let increment map

φ = φ(n, (a, b)) : N× (N×N)→ N be defined by

φ(0, (a, b)) = 0 : N×N→ N and

φ(sn, (a, b)) = φ(n, (a, b)) + sgn((ar n) + (br n)) :

N× (N×N)→ N

We show for this φ

max(ar n, br n) + φ(n, (a, b))

= max(ar sn, br sn) + φ(sn, (a, b)) (5)

as well as

max(br n, ar n) + φ(n, (a, b))

= max(br sn, ar sn) + φ(sn, (a, b)) (6)

(same increment)

First we show equation (5): Substitution of (ar n) for a and (br n)

for b within Reduction Lemma above gives

max(ar n, br n)

= max((ar n) r 1, (br n) r 1) + sgn((ar n) + (br n))

Adding φ(n, (a, b)) to both sides of this equation gives

max(ar n, br n) + φ(n, (a+ b))

= max((ar n) r 1, (br n) r 1)

+ sgn((ar n) + (br n)) + φ(n, (a+ b))

= by def max(ar sn, br sn) + φ(sn, (a, b))

i. e. equation (5)
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We show equation (6): By substitution of (b r n) for b and (a r n)

for a in Opposite Reduction Lemma and addition of φ(n, (a, b))

on both sides we get

max(br n, ar n) + φ(n, (a, b))

= max((br n) r 1, (ar n) r 1)

+ sgn((br n) + (ar n)) + φ(n, (a, b))

= max((br n) r 1, (ar n) r 1)

+ sgn((ar n) + (br n)) + φ(n, (a, b))

= by def max((br n) r 1, (ar n) r 1) + φ(sn, (a, b))

= max(br sn, ar sn) + φ(sn, (a, b))

i. e. equation (6)

From the two Lemmata we get by uniqueness U1

max(ar n, br n) + φ(n, (a, b))

= max(ar 0, br 0) + φ(0, (a, b)) = max(a, b) + 0 = max(a, b)

as well as

max(br n, ar n) + φ(n, (a, b))

= max(br 0, ar 0) + φ(0, (a, b)) = max(b, a) + 0 = max(b, a)

and hence

max(a, b) = max(ar n, br n) + φ(n, (a, b)) as well as

max(b, a) = max(br n, ar n) + φ(n, (a, b))
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and so, by substitution of b into n :

max(a, b) = max(ar b, br b) + φ(b, a, b)

= (ar b) + φ(b, (a, b))

= max(br b, ar b) + φ(b, (a, b))

= max(b, a) : N×N→ N

q. e. d. max commutativity.

This given we show for GA (and hence for PR) scheme

f, g, h : A×N→ N

f(a, 0) = g(a, 0) : A→ N

f(a, sn) = f(a, n) + h(a, n) : A×N→ N

g(a, sn) = g(a, n) + h(a, n) : A×N→ N

V4

f(a, n) = g(a, n).

Rule V4 can be derived by applying rule U1 to the distance map

d(a, n) = |f(a, n), g(a, n)| = |f(a, n)− g(a, n)|
= by def (f(a, n) r g(a, n)) + (g(a, n) r f(a, n)) :

A×N→ N2 +−→ N
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d(a, 0) = (f(a, 0) r g(a, 0)) + (g(a, 0) r f(a, 0)) = 0

d(a, sn) = (f(a, sn) r g(a, sn)) + (g(a, sn) r f(a, sn))

= (f(a, n) + h(a, n)) r (g(a, n) + h(a, n))

+ (g(a, n) + h(a, n)) r (f(a, n) + h(a, n))

= (f(a, n) r g(a, n)) + (g(a, n) r f(a, n))

= d(a, n) : A×N→ N

whence by U1:

d(a, n) = d(a, 0) = 0 i. e.

(f(a, n) r g(a, n)) + (g(a, n) r f(a, n)) = 0 whence

f(a, n) r g(a, n) = 0 = g(a, n) r f(a, n) : A×N→ N

and hence

f(a, n) = f(a, n) + (g(a, n) r f(a, n))

= max(f(a, n), g(a, n))

= max(g(a, n), f(a, n))

= g(a, n) + (f(a, n) r g(a, n))

= g(a, n) q. e. d.

3.2 Equality definability

Individual equality is defined as equality predicate

[m
.
= n] : N×N→ N
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via weak order as follows:

[m ≤ n] =def ¬ [mr n] : N2 → N→ N where

protoboolean operation negation given as

¬n =def 1 r n directly p. r. defined by

¬ 0 =def 1 = s 0 : 1→ N

¬ sn =def 0 : 1→ N

This order on N is reflexive and transitive.

Individual equality – first on N – then is easily defined by

[m
.
= n] =def [m ≤ n ∧ n ≤ m]

= by def [m ≤ n] · [n ≤ m] : N2 → N

[It is a protopredicate.]

We now have at our disposition all ingredients for

Equality definability theorem

f = f(a) : A→ B, g = g(a) : A→ B in PR

PR ` trueA = by def 1 ◦ ΠA = [f(a)
.
=B g(a)] :

A
∆−→ A× A f×g−−→ B ×B

.
=B−−→ N

(EqDef)

PR ` f = g : A→ B i. e. f =PR g : A→ B

A map equation which holds true predicatively for “all” arguments

individually gives rise to an argument-free categorical equation be-

tween the maps concerned.
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Proof: We begin with the special case B = N : Let f, g : A→ N

PR maps satisfying the antecedent of (EqDef). Then

PR ` f(a) = f(a) + 0 = f(a) + (g(a) r f(a)) by antecedent

= max(f(a), g(a)) by definition of max(m,n)

= max(g(a), f(a)) by max commutativity

= g(a) + (f(a) r g(a))

= g(a) + 0 = g(a) : A→ B

The general case for codomain object B follows since individual equal-

ity on (binary) cartesian products is canonically defined component-

wise and B is a cartesian product of N’s q. e. d.

Equality convention

Motivated by equality definability just proved, we write from now

on f(a) = g(a) or [f(a) = g(a)] or [f = g] instead of f(a)
.
= g(a).

These fundamentals given we continue with properties of the alge-

braic structure on N.

3.3 Further Algebra on the NNO

Theorem: In free–variables arithmetics the commutative law for mul-

tiplication: n ·m = m · n holds.

Proof: We need the following
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Lemma:

(i) 0 · n = 0

(ii) sa · n = a · n+ n

Proof:

(i) 0 · 0 = 0 and

0 · sn = 0 · (n+ 1) = 0 · n+ 0 = 0 · n = 0 · 0 = 0.

(ii) We show f(a, n) := sa · n = g(a, n) := a · n + n using V4:

f(a, 0) = g(a, 0) because for n = 0 we get (sa) · 0 = 0 as well as

a · 0 + 0 = a · 0 = 0.

f(a, sn) = (sa) · (sn) = (a+ 1) · (n+ 1)

= (a+ 1) · n+ (a+ 1) = (sa) · n+ sa

= f(a, n) + h(a, n) with h(a, n) := sa

g(a, sn) = a · (sn) + sn = a · (n+ 1) + (n+ 1)

= a · n+ a+ n+ 1 = a · n+ n+ a+ 1

= a · n+ n+ sa

= g(a, n) + h(a, n).

So V4 gives f(a, n) = g(a, n) i.e. sa · n = a · n+ n.

q. e. d.

We continue with the proof of a · n = n · a:

From a · 0 = 0 = 0 · a and a · sn = a ·n+n = sn · a by the Lemma,

we conclude a · n = n · a by V4.
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q. e. d.

Theorem: In free–variable arithmetics multiplication distributes

over addition: a · (m+ n) = a ·m+ a · n.

Proof: Case n = 0 is trivial by definition of + and · .

From the hypothesis a · (m + n) = a ·m + a · n we infer the next

step a · (m + sn) = a · m + a · sn by rule V4 above – with passive

parameter (a,m) – as follows:

with f((a,m), n) : = a · (m+ n)

g((a,m), n) : = a ·m+ a · n and

h((a,m), n) : = a

we have

f((a,m), sn) = a · (m+ sn) = a · (m+ (n+ 1))

= a · ((m+ n) + 1) = a · (m+ n) + a

= f((a,m), n) + h((a,m), n)

g((a,m), sn) = a ·m+ a · sn = a ·m+ a · (n+ 1)

= a ·m+ a · n+ a

= g((a,m), n) + h((a,m), n).

From this V4 gives

f((a,m), n) = g((a,m), n) i. e.

a · (m+ n) = a ·m+ a · n
q. e. d.
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Theorem: In free–variable arithmetics the associative law holds:

a · (m · n) = (a ·m) · n

Proof: We prove the law applying rule V4 with “active” parameter

n and passive parameter (a,m) to

f((a,m), n) : = a · (m · n)

g((a,m), n) : = (a ·m) · n and

h((a,m), n) : = a ·m

For n = 0 we have: a · (m · n) = a · 0 = 0 and on the other hand:

(a ·m) · 0 = 0.

For V4–step we have:

f((a,m), sn) = a · (m · sn) = a · (m · (n+ 1))

= a · (m · n+m) = a · (m · n) + a ·m
= f((a,m), n) + h((a,m), n)

g((a,m), sn) = (a ·m) · (n+ 1) = (a ·m) · n+ a ·m
= g((a,m), n) + h((a,m), n).

By V4 we get

f((a,m), n) = g((a,m), n) i. e.

a · (m · n) = (a ·m) · n
q. e. d.

Minus distributivity theorem: In free–variable arithmetics mul-

tiplication distributes over truncated subtraction:

a · (mr n) = a ·mr a · n
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Proof by V4 as follows.

f((a,m), n) := a · (mr n)

g((a,m), n) := a ·mr a · n

Anchoring

f((a,m), 0) := a · (mr 0) = a ·m
= a ·mr a · 0 = g((a,m), 0)

V4 progress h((a,m), n) := 0

f((a,m), 0) = g((a,m), 0) : A×N→ N

f((a,m), sn) = f((a,m), n) + 0 : (A×N)×N→ N

g((a,m), sn) = g((a,m), n) + 0 : (A×N)×N→ N

V4

f((a,m), n) = g((a,m), n) : (A×N)×N→ N

i. e. a · (mr n) = a ·mr a · n

A× (N×N)→ N q. e. d.

Proposition: Addition and multiplication in free-variable arith-

metics are weakly monotonous i. e.

m ≤ n =⇒ mr n = 0

=⇒ (a+m) r (a+ n) = 0 by absorption law for r
=⇒ a+m ≤ a+ n

m ≤ n =⇒ mr n = 0

=⇒ (a ·m) r (a · n) = a · (mr n) = 0

=⇒ a ·m ≤ a · n
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where protoboolean implication is defined as the p. r. predicate

[a =⇒ b] =def [a ≤ b] : N×N→ N

cf. chapter on arithmetical logic below q. e. d.

Putting things together, we obtain

3.4 Structure theorem for the NNO

• N admits the structure

1
0 //

s 0
// N

sgn>0

��

N×N

r
ww +oo

·
oo

≤

||
=

||
N

of a unitary commutative semiring with zero, combined with

• a foundational important additional algebraic structure namely

truncated subtraction mrn : N×N→ N with its simplification

properties, and such that multiplication distributes over this kind

of subtraction;

• linear order [m ≤ n] : N ×N → N as a reflexive and transitive

predicate – this order is p. r. decidable;

• max(a, b) =def a+(bra) = b+(arb) = max(b, a) : N×N→ N

is in fact the maximum with respect to the order

[a ≤ b] : N×N→ N.
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Furthermore we have

• fundamental equality predicate

[m = n] = by def [m ≤ n] ∧ [m ≥ n] : N×N→ N

which is an equivalence predicate, and which makes up a tri-

chotomy with strict order

[m < n] =def sgn(nrm) = [m ≤ n] ∧ ¬[m = n] :

N×N→ N

Proof of the latter assertion as exercise.

• Algebra Combined with Order: As expected, addition is

strongly monotonic in both arguments, multiplication is strongly

monotonic for both arguments strictly greater than zero, and

truncated subtraction is weakly monotonic in its first and weakly

antitonic in its second argument.

Proofs as exercises.

3.5 Exponentiation and faculty

• exponentiation

NNO exponentiation exp(a, n) = an : N × N → N is defined

(iteratively) p. r. as follows:

a0 = exp(a, 0) = 1 : A = N
Π−→ 1

0−→ N = B

asn = an · a = exp(a, n) · a :

(A×N)×B = (N×N)×N exp×` `−−−−→ N×N ·−→ N = B
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• super exponentiation

super exponentiation sexp(a, n) = a↑n : N×N→ N is defined

iteratively p. r. as follows:

a↑0 = sexp(a, 0) = a0 = 1 : A = N
Π−→ 1

0−→ N = B

a↑sn = aa↑n = a(a↑n) = exp(a, sexp(a, n)) :

(A×N)×B

= (N×N)×N `−→ N×N (`,sexp)−−−−→ N×N exp−−→ N = B

• faculty fac = fac(n) : N → N is defined by full schema as

follows:

0! = fac(0) = 1 : A = N
Π−→ 1

1−→ N = B

(n+ 1)! = fac(sn) = n! · (n+ 1) = h((a, n), fac(a, n)) :

(A×N)×B → B with

h = h((a, n), b) = (n+ 1) · b :

(N×N)×N (s r)×N−−−−→ N×N ·−→ N

We have here an example where step function of full schema

depends not only from previous value b but also from recursion

parameter n. 5

• Binomial coefficients

5an example asked for by K. Polthier
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g(n) = 1 ΠN(n) : N→ 1→ Q

h = h((n, k), b) = b · n−k
1+k

: (N×N)×Q→ Q (step)

(choose)

function
(
n
k

)
= pr[g, h](n, k) : (N×N)→ Q,(

n
0

)
= 1 : N→ Q (init)(

n
k+1

)
=
(
n
k

)
· n−k

1+k
: N×N→ Q

This is an example again where the recursion step depends not

only on the actual value of the recursive function to be con-

structed, but also from the actual value of the recursion param-

eter, here k ∈ N.

Exercise

– show
(
m
n

)
∈ N

– show
(
m
n

)
= n!

k!(n−k!)

– show the bimomial theorem

(a+ b)n =
∑n

k=0

(
n
k

)
an−kbk : (N×N)×N→ N
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Chapter 4

Predicate abstraction

We extend the fundamental theory PR of primitive recursion defini-

tionally by abstraction (sub)objects – sets – {A : χ} = {a ∈ A : χ(a)}
for p. r. predicates χ = χ : A→ N, a ∈ A a bound variable.

We get an (embedding) extension of PR into a constructive “set”

theory PRa with subsets of cartesian powers of NNON. The extended

primitive recursive theory gets all of the expected properties, see the

structure theorem for theory PRa below, theory of primitive re-

cursion with scheme of predicate abstraction.

4.1 Extension by predicate abstraction

We discuss a p. r. abstraction scheme as a definitional extension of

PR into theory PRa of p. r. decidable sets and p. r. maps inbetween,

decidable subsets of the objects of PR. The objects of PR are up to

83
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isomorphism

1, N1 =def N, N
m+1 =def (Nm ×N)

Here – and always below – m ∈ PR(1,N) is a free metavariable , over

the (natural) numbers.

The extension PRa is given by adding schemes (ExtObj), (ExtMap),

and (Ext=) below. Together they correspond to the scheme of ab-

straction in set theory, and they are referred below as schemes of p. r.

abstraction.

Our first predicate-into-set abstraction scheme is

χ : A→ N a PR-predicate:

sgn ◦ χ = χ : A→ N→ N,

A
χ //

χ

@@N
sgn // N

=

(ExtObj)

{A : χ} set (of emerging theory PRa)

Subset {A : χ} ⊆ A ∼= Nn may be written alternatively, with

bound variable a, as

{A : χ} = {a ∈ A : χ(a)}

Decidability remark: Object A ∼= Nm is countable, and there-

fore you can enumerate (the “elements” of) {a ∈ A : χ(a)} by enumer-

ation of A and taking out of this enumeration those a ∈ A for which

χ(a) = true.
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But for the time being you cannot in general decide algorithmically

if {A : χ} is empty or finite.

Nevertheless, set {A : χ} is a legitimate set in Cantor’s sense,

since for every thing (“element”) “feststeht” – is said – if it belongs to

{A : χ}, this at least for “things” in the “mother set” A ∼= Nm ∼= N.

The maps of PRa = PR + (abstr) come in by

{A : χ}, {B : ϕ} PRa-sets,

f : A→ B a PR-map,

PR ` χ(a) =⇒ ϕf (a), i. e.

[χ =⇒ ϕ ◦ f ] =PR trueA : A
Π−→ 1

1−→ N

(ExtMap)

f is a PRa-map f : {A : χ} → {B : ϕ}

In particular, if for predicates χ′, χ′′ : A→ N

PR ` [χ′(a) =⇒ χ′′(a)] : A→ N×N→ N

then idA : {A : χ′} → {A : χ′′} in PRa is called an inclusion, and

written ⊆ : A′ = {A : χ′} → A′′ = {A : χ′′} or A′ ⊆ A′′.

Note: For predicate (terms!) χ, ϕ : A→ N such that

PR ` χ = ϕ : A→ N (logically: such that PR ` [χ ⇐⇒ ϕ]),

we have

{A : χ} ⊆ {A : ϕ} and {A : ϕ} ⊆ {A : χ}

but – in general – not equality of sets. We only get in this case

idA : {A : χ}
∼=−→ {A : ϕ}
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as a PRa isomorphism.

So inclusion idA : {A : χ′} ⊆ {A : χ′′} above is formally only an

inclusion up to isomorphism.

A posteriori, we introduce1 the 0, 1 truth algebra 2 as

2 =def {0, 1} = by def {α ∈ N : α = 0 ∨ α = s 0}

with proto boolean operations on N restricting – in codomain and

domain – to boolean operations on 2, 2 × 2 by definition below of

cartesian product of sets within PRa.

PRa maps with common PRa domain and codomain are consid-

ered equal, if their values are equal on their defining domain predicate.

This is expressed by the scheme

f, g : {A : χ} → {B : ϕ} PRa maps,

PR ` χ(a) =⇒ [f(a) =B g(a)]

(Ext=)

f = g : {A : χ} → {B : ϕ},

explicitly:

f =PRa g : {A : χ} → {B : ϕ}, also noted

((χ, f), ϕ) =PRa ((χ, g), ϕ) or

PRa ` f = g : {A : χ} → {B : ϕ}

1 following Reiter 1982
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4.2 Arithmetical structure theorem

for theory PRa, of primitive recursion with predicate abstraction: 2

PRa is a cartesian p. r. theory. Theory PR is cartesian p. r. em-

bedded. Theory PRa has (universal) extensions of all of its predicates

and a (preliminary) two-valued truth set as codomain of these predi-

cates. In detail:

(i) PRa inherits associative map composition and identities from

PR

(ii) PRa has PR fully embedded by

〈f : A→ B〉 7→ 〈f : {A : trueA} → {B : trueB}〉

Such A are called objects, {A : χ} = {a ∈ A : χ(a)} sets.

In less formal context we abbreviate embedded object {A : trueA}
by A.

(iii) PRa has cartesian product

{A : χ}×{B : ϕ} =def {A×B : χ ∧ ϕ : A×B → N×N ∧−→ N}

with projections and universal property inherited from PR.

(iv) The embedding PR −→ PRa is a cartesian functor: it preserves

products and their cartesian universal property with respect to

the projections inherited from PR.

2 cf. Reiter 1980
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(v) PRa has extensions of its predicates, namely

Ext [ϕ : {A : χ} → 2] =def {A : χ ∧ ϕ} ⊆ {A : χ}
characterised as (PRa)-equalisers

Equ (χ ∧ ϕ, trueA) : {A : χ} → 2

[mutatis mutandis: within theory PRa we identify predicates

χ = sgn ◦ χ : A→ N→ N with maps χ : A→ 2 = by def {0, 1}]

PRa has all equalisers, namely equalisers

Equ[f, g] =def {a ∈ A : χ(a) ∧ f(a) =B g(a)}
= Ext[=B ◦ (f, g) : A′ → B′ ×B′ =−→ 2]

of arbitrary PRa map pairs f, g : A′ = {A : χ} → B′ = {B : ϕ}

and hence all finite projective limits, in particular pullbacks which

we will rely on later, and kernel pairs.

A pullback, of a map f : A→ C along a map g : B → C, also of

g along f, is the square in

D k

��

h

!!

(h,k)

  
=

P
g′

//

f ′

��

=

=

A

f

��
B g

// C

[We prefer the “set theoretical” way to construct first extension

sets out of the cartesian category structure of fundamental the-

ory PR, and we construct equalisers and the other finite limits



Arithmetical structure theorem 89

on this basis. Another possibility – Romàn 1989 – is to add

equalisers as undefined notion and to construct limits directly

from these and cartesian product.]

The embedding preserves such limits as far as available already

in PR. Equality predicate extends to cartesian products compo-

nentwise as

[(a, b) =A×B (a′, b′)] =def [a =A a
′] ∧ [b =B b

′] : (A×B)2 → 2,

and to (predicative) subsets {A : χ} by restriction.

(vi) Arithmetical structure extends from PR to PRa i. e. PRa ad-

mits the iteration scheme as well as Freyd’s uniqueness scheme:

the iterated

f § : {A : χ} × {N : trueN} → {A : χ}

is just the restricted PR-map f § : A × N → A, the unique-

ness schemes follow from definition of =PRa via PRa’s scheme

(Ext=) above.

(vii) In particular our equality predicate =A : A2 → N restricted to

subsets A′ = {A : χ} ⊆ A inherits all of the properties of equality

on N and on the other fundamental objects.

(viii) PRa has (binary) sums (coproducts).

(ix) PRa has coequalisers of kernel pairs, of equivalence predicates.

(x) Countability: Each fundamental object A i. e. A a finite power

of N ≡ {N : trueN}, admits by Cantor’s isomorphism

ct = ctN×N(n) : N
∼=−→ N×N
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a retractive count ctA(n) : N→ A.

Problem: For which predicates χ : A→ 2 (A fundamental) does

theory PRa admit a retractive count

ct = ct{A:χ}(n) : N ≡ {N : trueN} → {A : χ}?

The difficulty is seen already in case ∅A = by def {A : falseA}. A

sufficient condition is {A : χ} to come with a point, a0 : 1→ {A : χ},
preferably 0A : 1→ {A : χ}.

In this case: PR ` χ(0A) – we call set {A : χ} zero-pointed. If

not, and point needed, we replace {A : χ} by subset of PR object A

augmented by 0A of A.

4.3 Proof of structure theorem

(i) For f : {A : χ} → {B : ϕ}, g : {B : ϕ} → {C : ψ} in PRa we

have

PR ` χ =⇒ ϕf =⇒ ψ g f : A→ N

whence g ◦ f : {A : χ} → {C : ψ} in PRa, asociativity of

composition and neutrality of identitities are inherited from PR.

Compatibility of composition with =PRa : For

f =PRa f ′ : {A : χ} → {B : ϕ},
g =PRa g′ : {B : ϕ} → {C : ψ} in PRa
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we show

g ◦ f =PRa g ◦ f ′ : {A : χ} → {C : ψ},
g′ ◦ f =PRa g ◦ f : {A : χ} → {C : ψ} :

PR ` χ(a) =⇒ f(a) =B f
′(a) : A→ N

PR ` χ(a) =⇒ g f(a) =C g f
′(a) : A→ N,

PR ` χ(a) =⇒ ϕf(a) : A→ N

PR ` ϕ(b) =⇒ g(b) =C g
′(b) : A→ N

PR ` χ(a) =⇒ g f(a) =C g
′ f(a) : A→ N

both by Leibniz substitutivities with respect to = q. e. d.

(ii) The embedding assertion is obvious.

(iii) Assertion on the cartesian product: Consider induced-into-product

diagram

{A : χ}

{C : ψ}

f
33

=

(f,g) //

=

g
++

{A×B : χ ∧ ϕ}

`

OO

r

��
{B : ϕ}



92 Predicate abstraction

PR `ψ(c) =⇒ χ f(c) ∧ ϕ g(c)

⇐⇒ [χ ∧ ϕ] (f, g)(c) q. e. d.

(iv) Cartesian embedding assertion is obvious by construction of PRa

over PR.

(v) Extensions of predicates etc: Proof is left to the reader as cate-

gorical exercise on construction of all finite limits out of binary

products and extensions of predicates, in particular on construc-

tion of pullbacks.

(vi) Proof of critical iteration assertion: consider an endomorphism

f : {A : χ} → {A : χ}, so

PR ` χ =⇒ χ f :

A
(χ,χ f)−−−−→ N×N =⇒−−→ N.

The iterated is the restriction of PR iterated f § : A ×N → A.

Is it a PRa map f § : {A : χ} × {N : true} → {A : χ}?

Apply Peano Induction P5 (within PR) to predicate

ϕ = ϕ(a, n) =def [χ(a) =⇒ χ fn(a)] : A×N→ N :

ϕ(a, 0) = true by anchoring f §

[ϕ(a, n) =⇒ ϕ(a, sn)]

= [[χ(a) =⇒ χ f §(a, n)] =⇒ [χ(a) =⇒ χ f §(a, sn)]]

= [[χ(a) =⇒ χ f §(a, n)] =⇒ [χ(a) =⇒ χ f f §(a, n)]]

= true
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the latter by f : {A : χ} → {A : χ} a PRa map:

PR ` χ f §(a, n) =⇒ χ f f §(a, n)

and by boolean tautology.

Peano Induction then gives ϕ = ϕ(a, n) = true : A×N→ N i. e.

f § : {A : χ} × {N : true} → {A : χ} is in fact a PRa map.

Compatibility of iteration with PRa’s equality: for endo maps

f =PRa g : {A : χ} → {A : χ} i. e.

PR ` χ(a) =⇒ f(a) = g(a) : A→ N

We show

PR ` χ(a) =⇒ f §(a, n) = g§(a, n) : A×N→ N

by Peano Induction on

ϕ(a, n) = [χ(a) =⇒ f §(a, n) = g§(a, n)]

as follows:

anchor ϕ(a, 0) = trueA is trivial. Step is an analogon to step

above:

[ϕ(a, n) =⇒ ϕ(a, sn)]

= [[χ(a) =⇒ f §(a, n) = g§(a, n)]

=⇒ [χ(a) =⇒ f §(a, sn) = g§(a, sn)]]

= [[χ(a) =⇒ f §(a, n) = g§(a, n)]

=⇒ [χ(a) =⇒ f f §(a, n) = g g§(a, n)]]

= true
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by f =PRa g : {A : χ} → {A : χ}.

Peano Induction then gives ϕ = ϕ(a, n) = true : A×N→ N i. e.

in fact

f § =PRa g§ : {A : χ} × {N : true} → {A : χ} q. e. d.

(vii) restriction of equality predicates is obvious.

(viii) we have constructed in section on Hilbert’s infinite hotel the sum

1 + N just as 1 + N ∼= N and reveal set 2 = {0, 1} in section

below, on 2-valued set, as coproduct/sum 2 ∼= 1+ 1.

Define N+N := N with coproduct injections

ι = ι(n) =def 2n : N→ N and

κ = κ(n) =def 2n+ 1

N is the disjoint union of its even and its odd numbers. This

gives the assertion since by Cantor isomorphy any (pointed) set

of PRa is isomorphic to N or a predicative subset of N.

(ix) PRa has quotients of equivalence pairs (and hence of kernel

pairs) in form A/ρ =def {a ∈ A : a =A ā} where ā =def

min{ã ≤A a : ã ρ a} is the minimal representant of the equiv-

alence class of a, minimal with respect to the linear well order

≤A: A×A→ 2 on A which is given by Cantor’s isomorphism

ctA : N
∼=−→ A, A a nested binary power of N, and its codomain

restriction to subsets A′ = {A : χ} in PRa. In formal terms:
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PRa admits the following scheme of forming quotients by equiv-

alence predicates:

ρ : {A : χ} × {A : χ} → 2

an equivalence predicate in PRa

(QuotPred)

[a]ρ =def min{ã ≤A a : ã ρ a} : A→ A

{A : χ}/ρ =def {a ∈ {A : χ} : a =A [a]ρ}

together with quotient map

natρ = natρ(a) =def [a]ρ : {A : χ} → {A : χ}/ρ

natρ : {A : χ} → {A : χ}/ρ has the universal properties of a

coequaliser of PRa pair

{(a′, a′′) ∈ {A : χ}2 : a′ ρ a′′} ⊆ // A× A
` //
r
// A

[ [a]ρ : {A : χ} → {A : χ} is the minimal representant of the ρ

equivalence class of a.]

Map pair above is the canonical kernel pair KP[natρ] of quotient

natρ : {A : χ} → {A : χ}/ρ q. e. d.
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Chapter 5

Arithmetical logic

NNO N with truth value false = 0, and all successors working as

truth value true, make out of N sort of boolean truth set allowing for

a protoboolean logic and predicate calculus.

In the framework PRa of primitive recursion with predicate-into-

subset abstraction we get the usual 2-element boolean algebra 2 =

{0, 1} ⊂ N ≡ {N : trueN} and the usual boolean logic and free-

variables predicate calculus in categorical form.1

Set 2 = {0, 1} turns out to be a sum/coproduct 2 ∼= 1 + 1 of

the terminal object 1 with itself. The proof is by the full schema of

primitive recursion.

The definition of the boolean operations on 2 is as usual out of

negation ¬α = 1rα : 2→ 2 and conjunction α∧β = α·β : 2×2→ 2,

and gives 2 the structure of a boolean algebra.

The free-variable form of the Peano axioms is shown as a theorem of

1This development is taken from Reiter 1982.

97



98 Arithmetical logic

the theory PR of primitive recursion. Same for Leibniz’ substitutivity

into predicative equality.

5.1 Protoboolean Structure on the NNO

In the framework GA of Goodstein Arithmetic and primitive recursion

PR we introduce on NNO N the following proto boolean structure:

1
false≡ 0 //
true≡ 1

// N

¬

  

sgn>0

��

N×N
∨≡+oo
∧≡ ·

oo

⇒ ≡≤

uu

⇔≡=

uuN

[Successors are all viewed logically to represent truth value true.]

ObjectN admits definition of (boolean) “logical functions” by truth

tables as does set 2 classically and – below – in theory PRa = PR +

(abstr) of primitive recursion with predicate abstraction.

Definition (recall): A PR map χ : A→ N to be a predicate

(on A) is to mean

PR ` χ = sgn ◦ χ : A→ N→ N i. e.

PR ` [[χ(a) = 0] ∨ [χ(a) = 1]] : A→ N i. e.

PRa ` χ = χ : A ≡ {A : trueA} → 2
⊆−→ N ≡ {N : trueN}
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PRa set 2 defined by

2 = {0, 1} = by def {α ∈ N : [α = 0] ∨ [α = 1 = s 0]}
2 works as coproduct/sum

2 ∼= 1+ 1 with coproduct injections

1
0 // 2 oo

1
1

see next section.

Discreteness question: Do we have for χ : A→ N

PR ` [χ(a) ≤ 1] = [[χ(a) = 0] ∨ [χ(a) = 1]] : A→ N?

We do not rely on this here.

5.2 2-valued set as coproduct/sum

Within theory PRa = PR + (abstr) set 2 comes as a sum

1
0 // 2 ∼= (1+ 1) 1

1oo over which cartesian product

A× distributes:

Coproduct Lemma for set 2

• Set 2 = {0, 1} inherits coproduct property

2 ∼= 1+ 1 from N ∼= 1+N :
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For b0, b1 : 1→ B in PRa, diagram:

1
b0

��

0

��
=

2 = {0, 1} b

(b0|b1)
//

=

B

1
b1

FF

1 s 0

OO

PR map

b =def pr[b0, b1 ◦ r1,N ◦ (Π, id)] : N→ 1×N→ B

does the job, uniquely with respect to equality of PRa, since

• with general parameter set A in PRa in place of 1 :

A× 2 ∼= A+ A, diagram:

A
f

��

(a,0A)

��
=

A× 2 = A× {0, 1} h

(f |g)
//

=

B

A
g

AA

(a,s 0A)

OO

embedded in full p. r. (commuting) diagram
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A
f (anchor)

""

(a,0A)

��

(a,0 ΠA)

��
A×N

A×sgn
**tt

A×⊆

pr

44A× 2 h

(f |g)
// B

A×N

A×s

OO

` // A

g

66

(a,s 0A)

OO

(A×N)×B

` `

OO
g ` ` (step)

DD

`

ff

PRa map

pr = pr[f, ` ` g] : A×N→ B

is – full schema of primitive recursion – the unique map such

that

pr(a, 0) = f(a) as well as

pr(a, s n) = g ` `((a, n), pr(a, n)) = g(a)

whence – A× ⊆: A×2→ A×N having A×sgn : A×N→ A×2
as a retraction – h = pr ◦ (A× ⊆) : A× 2→ A×N→ B is the

unique commutative fill-in (f |g) : A×2→ B into the coproduct

diagram q. e. d.
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5.3 Boolean operations

Within theory PRa “the” boolean operations can be defined on

2 = {0, 1} by heritage from the arithmetical structure of NNO

as follows:

• truth values false := 0, true := 1 = s 0 : 1→ 2 ⊂ N

• negation

¬ = ¬α =def 1 r α : 2
(⊆,1)−−−→ N×N r−→ N

sgn−−→ 2

where signum p. r. defined by

sgn 0 = 0, sgn(sn) = 1 = s 0 i. e.

sgnn = [n > 0] : N→ N p. r. decides on positiveness.

• conjunction

[α ∧ β] =def sgn(α · β) : 2× 2 ⊆×⊆−−−→ N×N→ N
sgn−−→ 2;

• disjunction

[α ∨ β] =def sgn(α + β) : 2× 2 ⊆×⊆−−−→ N×N→ N
sgn−−→ 2;

as well as

• implication

[α ⇒ β] := [α ≤ β] : 2× 2 ⊆×⊆−−−→ N×N→ 2;

• biimplication, logical equivalence

[α ⇐⇒ β] := [α ⇒ β] ∧ [β ⇒ α] = [α ≤ β] ∧ [β ≤ α]

= [α = β] : 2× 2 ⊆×⊆−−−→ N×N→ 2



Formal extension by truth algebra 103

the latter predicate equation by antisymmetry of (weak) order

predicative equality on N.

• (relative) complement “α but not β”

[αr β] = [α ∧ ¬β] :

2× 2 ⊆×⊆−−−→ N×N→ 2

5.4 Formal extension by truth algebra

In Computer Science some consider it an advantage to separate the

type of (boolean) truth values – BOOLEAN – from the type of natural

numbers – UNSIGNED INTEGER, for the sake of (relative) context

independence.

Let us category equivalently extend theory PR of primitive

recursion into a theory PR2 = PR + 2 as follows:

• formally add an object 2 to the set {1,N} of PR’s basic objects:

Borrow this object and its operations (intuitively) from Logic.

• add a map ON ≡ > ≡ true : 1→ 2 to the basic maps of PR

as well as a map r : 2× 2→ 2

[ ‘αr β’ is to mean α but not β.]

– define 〈OFF : 1→ 2〉 ≡ φ ≡ false

=def true r true = r ◦ (true, true) : 1→ 2× 2→ 2

– define negation ¬ = 〈¬(α) : 2→ 2〉 = true r α :

2→ 2× 2→ 2
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– define conjunction 〈∧ = α∧β〉 = αr¬ β = αr(truerβ) :

2× 2→ 2× 2→ 2

• define – as usual – the other boolean operations

out of ¬ and ∧ , in particular

NOR = ∧ ◦ (¬ × ¬) : 2× 2→ 2

∨ = ¬ ◦ NOR = ¬ ◦ ∧ ◦ (¬ × ¬) : 2× 2→ 2

⇒ = ∨ ◦ (¬ ◦ `, r) : 2× 2→ 2

⇐ = ∨ ◦ (`,¬ ◦ r) : 2× 2→ 2

⇐⇒ = ∧ ◦ (⇐ , ⇒ ) : 2× 2→ 2

logical equality =2 =def ⇐⇒ : 2× 2→ 2

• Up to here, object 2 is introduced just as a boolean algebra,

example for such a boolean algebra is

true •

possibly � ¬� necessarily not

false •

• For to make object 2 two-valued, insert into the generation

process for theory PR2 two additional “undefined” maps:

a 2-values number interpretation of 2,

pret = pret(α) : 2→ N
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coming with a retractive “inverse”, boolean signum

sign = sign(n) : N→ 2

additional (“generic”) equations

sign ◦ pret = id2 : 2→ N→ 2 (pret1)

pret ◦ sign = sgn : N→ N (pret2)

sgn(n) = by def 1 r (1 r n) : N→ N→ N (recall)

commutative diagram

2
pret //

id

77N
sign //

sgn

772
pret // N

2-anchoring Remark: Within theory S = PR2 + (abstr) be-

low, these two maps restrict to a pair

pret : 2
∼=−→ {0, 1},

sign| : {0, 1}
∼=−→ 2

of mutual inverse isomorphisms, compatible with the pertaining

truth values, diagram

1
false // 2

pret

��

∼=

1
trueoo

1
0 // 2 = {0, 1}

sign|

UU

1
1

s 0
oo

• build the “class” of objects of theory PR2 by closure of the set

{1,N,2} of basic objects against (binary) cartesian product;
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• build the class of maps of theory PR2 by closure of the above

against identic maps, terminal maps, left and right projections,

composition, induced maps as well as against endo map iteration.

• build the class of equations for theory PR2 as the class of prim-

itive recursive equations generated over the (additional) equa-

tions introduced above – in particular equations (pret1) and

(pret2).

5.5 Constructive set theory S

The boole-extended theory PR2 – conservative extension of fundamen-

tal p. r. theory PR – comes with the usual free-variables boolean logic

and with an “induced” free-variables (boolean) predicate calculus.

The protoboolean structure on NNO N has been turned above,

within theory PRa and strengthenings, into a two-valued boolean

algebra on set 2,

2 = by def {0, 1} = by def {n ∈ N : n = 0 ∨ n = 1}

and is turned within boolean (fundamental) p. r. theory PR2 into

“the” boolean algebra on object

2 = {false : 1→ 2, true : 1→ 2}
= {α ∈ 2 : α = false ∨ α = true}
≡ {φ,>} ≡ {OFF,ON}

diagram for the latter
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1
false //
true

// 2

¬

��

id

��

2× 2
∨oo
∧

oo

⇒

}}

⇔

}} r
rr2

A PR predicate on an object A of PR has been defined as a PR

map χ : A→ N with sgn ◦ χ = χ.

A PR2 predicate on an object A of PR2 is defined as a PR2

map χ = χ(a) : A→ 2.

Definition: Theory PR2 of boolean primitive recursion has a

(conservative, embedding) extension into theory

S =def PR2 + (abstr)

of boolean primitive recursion with predicate abstraction, abstraction

of PR2 predicates χ : A → 2 into subsets {A : χ} – in complete

(category-equivalent) parallel to the extension of fundamental the-

ory PR of primitive recursion into theory PRa = PR + (abstr)

of primitive recursion with predicate abstraction, a PR predicate

χ = sgn ◦ χ : A→ N giving a subset {A : χ} of A within PRa.

Theory S is called p. r. constructive set theory. Its objects {A : χ}
are called sets. Its sets of form {A : trueA} are embedded objects of

theory PR2, and are identified with these: A ≡ {A : trueA} for A in

PR2.
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Equivalence Remark: The mutually inverse S isomorphisms

2

pret--
∼= {0, 1}

sign|

ii

generate a natural functor equivalence between the Identity functor

ID : S −→ S and the Retraction/Coretraction functor

S
pret−→ PRa

⊆−→ S,

the categories S and PRa are (retractively) equivalent:

S ∼= PRa

We write maps f : {A : χ} → {B : ϕ}
of theory S = PR2 + (abstr) as

〈((χ, f)× ϕ) : A×B → (2×B)× 2〉 :

{A : χ} → {B : ϕ},
χ : A→ 2, ϕ : B → 2, f : A→ B in PR2,

PR2 ` [χ(a) =⇒ (ϕ ◦ f)(a)] : A→ 2

Two such maps f, f̃ : {A : χ} → {B : ϕ} are equal in S,

S ` ((χ, f)× ϕ) = ((χ, f̃)× ϕ)

iff PR2 ` χ =⇒ [ϕ ◦ f =B ϕ ◦ f̃ ]

Theory S admits a cartesian p. r. Embedding functor

I : PR2 −→ S defined by

I〈f : A→ B〉
= 〈((trueA, f)× trueB) : {A : trueA} → {B : trueB}〉
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We may abbreviate I〈f : A→ B〉 by f : A→ B.

Definition: In analogy to the case of theory PRa = PR+(abstr)

we call the objects of theory PR2 – cartesian products of 1,N,2 –

objects, and the objects of theory S (predicative) subsets

{A : χ} ⊆ A of PR2 objects A – sets.

2 has been added as an object, this truth algebra object is to replace

logically two-element set {0, 1} ⊂ {N : trueN} subset of PRa’s NNO.

5.6 Boolean logic on set theory S

Using the boolean operations on 2 above, a free-variables boolean

predicate calculus is easily defined, making the set of S predicates

on (any) object A into a boolean algebra:

• Overall negation:

¬ϕ(a) = ¬ ◦ ϕ : A→ 2→ 2

• Conjunction:

[χ ∧ ϕ] = ∧ ◦ (χ, ϕ) : A→ 2× 2→ 2

• Disjunction:

[χ ∨ ϕ] = ∨ ◦ (χ, ϕ) : A→ 2× 2→ 2

• Implication:

[χ =⇒ ϕ] = ⇒ ◦ (χ, ϕ) : A→ 2× 2→ 2

• Equivalence:

[χ ⇐⇒ ϕ] = [χ ⇒ ϕ] ∧ [ϕ ⇒ χ] : A→ (2× 2)
∧−→ 2
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‘⇐⇒ ’ acts as equality on truth object 2

• Complement:

[χr ϕ] = [χ ∧ ¬ϕ] : A→ (2× 2)→ 2

5.7 Map definition by case distinction

We construct in variable-free manner map definition

f = if[χ, (h|g)](a) =

h(a) if χ(a)

g(a) if ¬χ(a) “(otherwise)”

: A→ B

by case distinction – for given h, g : A→ B and predicate χ : A→ 2

on set A.

A consequence of A × 2 to be the coproduct A × 2 ∼= A + A is

in fact the following scheme of map definition by case distinction:

χ : A→ 2 p. r. predicate

h, g : A→ B p. r. maps

(IF)

f = if[χ, (h|g)] “if χ then h else g ”

=def (g|h ◦ `) ◦ (idA, χ) : A→ A×N→ B

satisfies – is characterised by –

¬χ(a) =⇒ [f(a) = if [χ, (h|g)](a) = g(a)]

χ(a) =⇒ [f(a) = if [χ, (h|g)](a) = h(a)]
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Proof: Commuting diagram:

{A : ¬χ}

⊆

��

⊆ //

ι

vv

A

g

''

(id,false)

��
{A : ¬χ}+ {A : χ} oo ∼=

iso
A

(id,χ) //

f

55A× 2
(g|h) // B

{A : χ}

⊆

OO

⊆ //

κ

hh

A

(id,true)

OO

h

77

with (g|h) : A×2 ∼= (A+A)→ B the induced map out of the coprod-

uct, with injections (idA, false), (idA, true) : A→ A× 2. Necessarily

f = (g ◦ ⊆ |h ◦ ⊆) ◦ iso : A→ {A : ¬χ}+ {A : χ} → B,

and this f : A → B does the job. ι and κ are the injections into

the sum – disjoint union – {A : ¬χ}+ {A : χ} ∼= A q. e. d.

5.8 Peano induction

Peano’s axioms read in categorical free-variables form2 as

Peano theorem

• P1: zero is a natural number:

0 : 1→ N is a map constant of N, a natural number as such.

• P2: to any natural number (free variable) n is assigned a suc-

cessor:

2 cf. Pfender/Kröplin/Pape 1994
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This assignment is realised categorically by the successor map

s = s(n) : N→ N.

Such successor s(n) is unique:

The notion ‘map’ is an undefined notion of theory PR, and as a

PR map s : N→ N; n
s7→ s(n), it is to make available a uniquely

determined successor (to n ∈ N free.)

• P3: 0 is not a successor:

This follows from sn > 0 whence sn 6= 0 by definition of m = n

and m < n via mr n.

Problematic: Without this negative axiom, infinity does not

follow. Quotient ring N/(m) satisfies P1, P2, and P4, P5 below.

• P4: equality s(m) = s(n) implies m = n :

This is injectivity of successor map s : N→ N.

Definition: Call a map f : A→ B injective, if

f(a) = f(ã) =⇒ a = ã : A× A→ 2

holds true.

The successor map s : N→ N is in fact injective, since it admits

the predecessor map pre : N→ N as a retraction, pre ◦ s = idN,

and is therefore injective (exercise: injective=monomorphic).

• P5: Peano-induction derived from uniqueness part (pr!) of full

scheme (pr) of primitive recursion:
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ϕ = ϕ(a, n) : A×N→ 2 predicate

ϕ(a, 0) = trueA(a) (anchor)

[ϕ(a, n) =⇒ ϕ(a, sn)] = trueA×N (induction step)

(P5)

ϕ(a, n) = trueA×N (conclusio).

Proof of Peano induction principle (P5) from full scheme (pr) of

primitive recursion:3

For scheme (pr!) choose as anchor map

g = g(a) = ϕ(a, 0) = trueA(a) : A→ 2 and as step map

h = h((a, n), b) = b ∨ ϕ(a, sn) : (A×N)×N→ 2

By (pr) we get a unique f = f(a, n) : A×N→ 2 which satifies

f(a, 0) = ϕ(a, 0) = trueA(a) and

f(a, sn) = h((a, n), f(a, n)) = f(a, n) ∨ ϕ(a, sn)

This works for f = trueA×N : A × N → 2 as well as for f = ϕ, the

3 Reiter 1982 and Pfender/Kröplin/Pape 1994
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latter since

ϕ(a, n) ∨ ϕ(a, sn)

= (ϕ(a, n) ∨ ϕ(a, sn)) ∧ (ϕ(a, n) =⇒ ϕ(a, sn))

by 2nd hypothesis

= ϕ(a, sn) by boolean tautology

(α ∨ β) ∧ (α ⇒ β) = β :

test with β = false and β = true.

q. e. d.

By replacing predicate ϕ with

ψ(a, n) : = ∧
i≤n
ϕ(a, i) : A×N→ 2

in this proof we get

Course of values induction principle

ϕ = ϕ(a, n) : A×N→ 2 predicate

ϕ(a, 0) = trueA(a) (anchor)

[ ∧
i≤n
ϕ(a, i) =⇒ ϕ(a, sn)] = trueA×N (induction step)

(P5)

ϕ(a, n) = trueA×N (conclusio).
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Here predicate ∧
i≤n
ϕ(a, i) : A×N→ 2 is p. r. defined by

∧
i≤0

ϕ(a, i) = ϕ(a, 0) : A→ 2

∧
i≤sn

ϕ(a, i) = ∧
i≤n
ϕ(a, i) ∧ ϕ(a, sn) : A×N→ 2 q. e. d.

Diagonal induction principle

A predicate on two (free) natural numbers, which is true on the hor-

izontal (half-)axis and on the vertical (half-)axis of the N × N grid,

and whose truth spreads (everywhere) in diagonal direction, is globally

true.

Formally, with a “passive” parameter (free variable) a ∈ A added:

ϕ = ϕ(a, (m,n)) : A× (N×N)→ 2 predicate

ϕ(a, (m, 0)) = true : A× (N× 1)→ 2

ϕ(a, (0, n)) = true : A× (1×N)→ 2

[ϕ(a, (m,n)) =⇒ ϕ(a, (sm, sn))] = true :

A× (N×N)→ 2

(diagind)

ϕ = true : A× (N×N)→ 2

Proof:4 Use the assertion ϕ(a, (x r n), (y r n)) =⇒ ϕ(a, (x, y))

proved for n = s 0 by case distinction on x
?
> 0 and y

?
> 0, the

general case being obtained from this case by Peano induction P5.

The principle then follows by substitution of n for y.

4Pfender/Kröplin/Pape 1994
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Chapter 6

Further Algebra on the NNO

Natural Numbers Object “NNO” N = 〈N, 0, s〉 bears the structure

N = 〈N, 0, 1,+,r, ·, <,≤,= 〉

of a linearily ordered commutative integrity semiring with truncated

subtraction

ar b : N×N→ N

defined recursively by

0 r 1 = 0

ar 0 = a

ar (n+ 1) = (ar n) r 1

and equality predicate

[a = b] = [a =N b] = [a ≤ b] ∧ [b ≤ a] : N×N→ 2

117
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Maximum is defined as

max(a, b) = a+ (br a) = b+ (ar b) = max(b, a),

minimum as

min(a, b) = ar (ar b) = br (br a) = min(b, a)

This is the (algebraic) quintessence of chapter on free-variables

Goodstein Arithmetic GA.

N has exponentiation an : N×N→ N recursively defined by

a0 = 1

an+1 = an · a

Exponentiation Lemma:

• am+n = am · an

• (am)n = am·n

• amn =def a(mn)

Proof as exercise.

N has faculty n! : N→ N recursively defined by

0! = 1

(n+ 1)! = n! · (n+ 1)

Integer division

Integer division with remainder (Euclide)

(a÷ b, a rem b) : N×N> → N×N
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is characterised by

a÷ b = max{c ≤ a : b · c ≤ a} : N×N> → N

a rem b = ar (a÷ b) · b : N×N> → N

Here N> =def {n ∈ N : n > 0}
Explicitely, we define

÷ = a÷ b : N×N> → N

via initialised iteration h = h((a, b), n) of

g = g((a, b), c) =

((a, b), c) if a < b,

((ar b, b), c+ 1) if a ≥ b

in

(N×N>)×N (N×N>)×s //

h

��

(N×N>)×N

h

��

N×N>

(id,0)
66

(id,0) ((

= =

(N×N>)×N g // (N×N>)×N

a÷ b =def rh((a, b), a) : N×N> → (N×N>)N→ N

a rem b =def `` h((a, b), a) = ar b · (a÷ b) : N×N> → N

The predicate a|b : N>×N→ N, a is a divisor of b, a divides b is

defined by

a|b = [(b rem a) = 0]
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Exercise: Construct the Gaussian algorithm for determination of

the gcd of a, b ∈ N> defined as

gcd(a, b) = max{c ≤ min(a, b) : c|a ∧ c|b} : N> ×N> → N>

by iteration of mutual rem.

Primes

Define the predicate is a prime by

P(p) =
p
∧
m=1

[m|p =⇒ m = 1 ∨m = p] : N→ 2 :

Only 1 and p divide p.

Write P for {n ∈ N : P(n)} ⊂ N too.

The (euclidean) count pn : N→ N of all primes is given by

p0 = 2,

pn+1 = min{p ∈ N : P(p), pn < p ≤
∏
q

[q ≤ pn ∧ P(q)]}+ 1

= min{p ∈ N : P(p), p < 2pn} : P→ P

iterated binary product and iterated binary minimum.

The latter presentation is given by Bertrand’s theorem.

Notes

(a) An NNO, within a cartesian closed category of sets, was first

studied by Lawvere 1964.
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(b) Eilenberg/Elgot 1970 iteration, here special case of one-successor

iteration theory PR, is because of Freyd’s uniqueness scheme

(FR!) a priori stronger than classical free-variables primitive recur-

sive arithmetic PRA in the sense of Smorynski 1977. If viewed

as a conservative subsystem of PM, ZF, or NGB that PRA is

stronger than our PR.

(c) Over Elementary Topoi (with their cartesian closed structure),

Freyd 1970 characterised Lawvere’s NNO by unique initialised

iteration. Such Freyd’s NNO has been called later, e.g. in Mai-

etti 2010, parametrised NNO.

(d) Lambek/Scott 1986 consider in parallel a weak NNO: unique-

ness of Lawvere’s sequences a : N → A not required. We need

here uniqueness (of the initialised iterated) for proof of Good-

stein’s 1971 uniqueness rules basic for his development of p. r.

arithmetic. Without the latter uniqueness requirement, the defi-

nition of parametrised (weak) NNO is equational.

(e) For uniqueness of the set of natural numbers (out of the Peano-

axioms), classical set theory needs higher order. This corresponds

here to the use of free meta-variables on maps.

(f) The idea to incorporate categorically truth set and free variables

predicate logic into primitive recursive Arithmetic is in Reiter’s

dissertation 1982.
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Chapter 7

Partiality

Maps f : {Nm : χ} → {Nn : ψ} of constructive set theory S can

be seen as partial p. r. maps f : Nm ⇀ Nn “but” with p. r. decided

domain of defined arguments.

If you generalise this suitably to domain of defined arguments given

as an S map into the source set of the partial map to be introduced,

you arrive at the notion of a partial p. r. map: a right unique corre-

spondence given as a hook of two p. r. maps, correspondence in the

sense of Brinkmann/Puppe 1969.

General recursive maps/algorithms fit into the theory Ŝ of partial

p. r. maps. Central question about these recursive maps/algorithms is

definedness/termination, as theorem or as condition, see in particular

termination conditioned soundness of evaluation, which fits into

theory Ŝ as a complexity controlle iteration (CCI) while loop.

In classical set theory these domains of definition are usually given

via existential quantification. But we want to avoid (non-constructive)

123
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formal (existential) quantification.

7.1 Partial p. r. maps

A partial PR map f : A ⇀ B is a pair

f = 〈df : Df → A, f̂ : Df → B〉 : A ⇀ B

of S-maps. It consists of a p. r. domain of defined arguments enumer-

ation df : Df → A and a p. r. (calculation) rule f̂ : Df → B into the

domain of values of f. S set Df (roof of f) has the form Df = {D : δf},
δf : D → 2 a p. r. predicate.

Partial map diagram

Df

df

��

f̂

&&
A

f
/ B

Typical index domain Df = N. In general, as an S set, it has form

Df = {D : δf}, δf : D → 2 an S predicate.

Usually Df = {A×B, δf : A×B → 2} for f : A ⇀ B.

The pair f = 〈df , f̂〉 is to fullfill the right-uniqueness condition

df (â) =A df (â
′) =⇒ f̂(â) =B f̂(â′)
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Alternatively, for general diagonal monoidal frame, f : A ⇀ B is

given by its graph

γf : Df → A×B
df = ` γf = `A,1 (A× Π) γf :

Df → A×B → A× 1
∼=−→ A

f̂ = r γf : Df → B

such that right-uniqueness condition is fullfilled for these df , f̂ .

In both definitions, graph γf of f : A ⇀ B is

γf = (df , f̂) = (df × f̂) ∆Df : Df → A×B

Typically, γf is just an inclusion

γf : Df = {A×B : δf}
⊆−→ A×B,

δf : A×B → 2 an S predicate

Graph inclusion f ′ ⊆̂ f of partial p. r. maps is given by an

S-map i : Df ′ → Df with

Df ′

df ′

��

i
�� f̂ ′





= =Df
df

~~

f̂

  
A

f ′

f
/ B

Equality of p. r. partials (enumeration):
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f ⊆̂ f ′, f ′ ⊆̂ f

f =̂ f ′

Partial p. r. map composition h = g ◦̂ f : A ⇀ B ⇀ C :

Dh

dh =

��

πl

��

πr

  
ĥ

��

Df

df

��

f̂

  

p.b. Dg

dg

��

ĝ

  

=

A
f /

h= g ◦̂f

7B
g /

=̂

C

Pullback π` of dg along f̂ is typically the inverse image of dg under f̂ .

But the definability domains df , dg, dh need not to be monic (injective).

[The idea is from Brinkmann/Puppe 1969: They construct com-

position of correspondences this way via pullback.]

Remark: The standard form of the pullback Dh is

Dh = {(â, b̂) ∈ Df ×Dg : f̂(â) =B dg(b̂)}
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with pullback-projections

πl = ` ◦ ⊆ : Dh → Df ×Dg → Df and

πr = r ◦ ⊆ : Dh → Df ×Dg → Dg

In a sense, the pullback Dh represents the inverse image Dh =
−1

f [Dg], more precisely: [Dh
`−→ Df ] =

−1

f̂ [Dg
dg−→ B].

Composition h = g ◦̂ f : A ⇀ B ⇀ C gives a well-defined partial

p. r. map h, since for (â, b̂), (â′, b̂′) ∈ Dh free

dh(â, b̂) =A dh(â
′, b̂′) ⇐⇒ df (â) =A df (â

′)

=⇒ f̂(â) =B f̂(â′) (f well-defined)

⇐⇒ f̂ `(â, b̂) = f̂ `(â′, b̂′)

=⇒ dg(r(â, b̂)) =B dg(r(â
′, b̂′))

( (â, b̂), (â′, b̂′) ∈ Dh, p.b. commutes)

⇐⇒ dg(b̂) =B dg(b̂
′) =⇒ ĝ(b̂) =C ĝ(b̂′)

=⇒ ĥ(â, b̂) = ĝ(b̂) =C ĝ(b̂′) = ĥ(â′, b̂′) : Dh ×Dh → 2

Obviously, partial S-map, Ŝ-map idŜ
A =def 〈(idA, idA) : A → A2〉 :

A ⇀ A works as identity for set A with respect to composition ◦̂ for

(emerging) theory Ŝ

If one of two Ŝ maps to be composed is an S-map, Ŝ-composition

becomes simpler:

Mixed Composition Lemma:

(i) For f : A ⇀ B in Ŝ, and g : B → C in S :

g ◦̂ f = 〈(df , g ◦ f̂) : Df → A× C〉 : A ⇀ C
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in diagram form:

Df

df

��
f̂

  

g ◦ f̂

$$
A

g ◦̂ f

7
f / B

g // C

(ii) For f : A→ B in S, g : B ⇀ C in Ŝ :

g ◦̂ f = 〈(
−1

f [dg], ĝ ◦ f̄) :
−1

f [Dg]→ A× C〉 : A ⇀ C,

as diagram:

−1

f [Dg]
f̄ //

−1
f [dg ]

��

p.b.

Dg

ĝ

��

dg

��
A

g ◦̂ f

6
f // B

g / C

Proof: Left as a (category theory) exercise.

7.1.1 Structure theorem for p. r. partials

Constructive p. r. set theory S carries theory Ŝ of partial p. r. maps

over S which comes with the following structure:
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(i) Ŝ carries a canonical structure of a diagonal symmetric monoidal

category, with composition ◦̂ and identities introduced above,

monoidal product × extending × of S, association

ASS : (A×B)× C
∼=−→ A× (B × C),

symmetry Θ : A×B
∼=−→ B × A,

and diagonal ∆ : A→ A× A

inherited from S.

(ii) The defining diagram for an Ŝ-map – namely

Df

f̂

&&

df

��
A

f / B

partial map diagram

is a commuting Ŝ diagram.

Conversely, the minimised opposite Ŝ-map d−f : A ⇀ Df to

S map df : Df → A fullfills

Df

f̂

&&

=̂

A

d−f

O

f / B

Put together:
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Df

f̂

&&

df

��

=̂

A

d−f

O

f / B

basic partial map diagram

(iii) Ŝ clearly inherits from S retractive pairing:

For h : C ⇀ A×B in Ŝ

h =̂ (` ◦̂h, r ◦̂h) : C ⇀ A×B

where for f : C ⇀ A , g : C ⇀ B

(f, g) =def (f × g) ◦̂ ∆C :

C → C × C ⇀ A×B
with diagonal ∆C : C → C × C of S

This equation guarantees uniqueness of the “induced” (f, g) :

C ⇀ A × B, but (f, g) does not satisfy (both of) the cartesian

equations ` ◦̂ (f, g) =̂ f and r ◦̂ (f, g) =̂ g except f and g have

equal domains of definition i. e. if i : Df → Dg, j : Dg → Df are

available such that dg ◦ i = df : Df → A as well as df ◦ j = dg :

Dg → A.

Note: Primitive recursive iteration of p. r. partials is not consid-

ered express, by reasons to be discussed within the section on content

driven loops.
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7.1.2 Proof of structure theorem for p. r. partials

Proof of assertion (i):

We first give to Ŝ the structure of a diagonal monoidal category

and verify the defining properties of this structure:

Composition ◦̂ introduced above – by pullback – is compatible

with ⊆̂ and hence also with =̂ since for f ′ ⊆̂ f : A ⇀ B and g′ ⊆̂ g :

B ⇀ C we are given “inclusions” i : Df ′ → Df and j : Dg′ → Dg

such that for h = g ◦̂ f : A ⇀ B ⇀ C and h′ = g′ ◦̂ f ′ : A ⇀ B ⇀ C

compatibility diagram below commutes with (unique) k : Dh′ → Dh

in S, induced into the pullback Dh by i ◦ `′ : Dh′ → Df ′ → Df and

j ◦ r′ : Dh′ → Dg′ → Dg

Dh′

k

//

r′

!!
`′

}}dh′

		

ĥ′

��

p.b.Df ′

i

��

f̂ ′

""
df ′

~~

Dg′

j

��

ĝ′

  
dg′

||
A

f

f ′
/

h

h′

5B
g

g′
/ C

Df

df

``

f̂

<<

Dg

dg

bb

ĝ

>>

Dh

r

==

`

aa
dh

UU

ĥ

II

p.b.

Compatibility diagrama of ◦̂ with ⊆
aF. Herrmann

For proving associativity of (partial) composition ◦̂ , consider
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D(h◦̂g)◦̂f

&&

ee
∼=

%% $$
p.b.

Dh◦̂(g◦̂f)

��

##

Dh◦̂g

p.b.

�� ��

Dg◦̂f

�� $$

p.b.

Df

df
��

f̂

%%

p.b. Dg

dg
��

ĝ

""

Dh

dh
��

ĥ

  
A

f / B
g / C

h / D

Associativity diagram for ◦̂ – via nested pullbacks

Here the standard form of isomorphism D(h◦g)◦f
∼=−→ Dh◦(g◦f) is re-

striction of association isomorphism

ASS : (A×B)× C
∼=−→ A× (B × C)

to an isomorphism D(h◦g)◦f
∼=−→ Dh◦(g◦f)

The (monoidal) product f × g : A× B ⇀ A′ × B′ of partial maps

is given componentwise as the hook

Df ×Dg

df×dg

��

f̂×ĝ

$$
A×B

f×g
/ A′ ×B′
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In particular, cylindrification with a set A is the hook

A×Dg

A×dg

��

A×ĝ

$$
A×B

A×g
/ A×B′

Cylindrification preserves inclusion f ′ ⊆̂ f : A ⇀ B given by

i : D′f → Df , since

C × i : DC×f ′ = C ×Df ′ → C ×Df = DC×f

gives the inclusion C × f ′ ⊆̂ C × f : C × A ⇀ C ×B.
Hence in particular, cylindrification preserves (partial) equality

f ′ =̂ f defined by f ′ ⊆̂ f and f ⊇̂ f ′ being given simultaneously.

As for S, the product of maps is given alternatively by composition

of cylindrifications:

f : A ⇀ A′, g : B ⇀ B′ in Ŝ

(×Ŝ)

(f × g) =def (f ×B′) ◦̂ (A× g) :

A×B ⇀ A×B′ ⇀ A′ ×B′

=̂ (A′ × g) ◦̂ (f ×B) :

A×B ⇀ A′ ×B ⇀ A′ ×B′

It extends the cartesian product of S into a bifunctor again, on the-

ory Ŝ. Within Ŝ, this product looses its universal property, essentially

since already [ΠA : A→ 1]A in S looses naturality,1 within Ŝ :

1 Budach/Hoehncke 1975, half-terminal category. Reichel 1987
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In general, domain of definition df : Df → A of a partial

f = (df , f̂) : A ⇀ B

does not cover the whole of domain A, whence

A
f /

Π
��
6 =̂

B

Π
��

1 1

Proof of bifunctoriality of × in Ŝ :

The point here is functoriality of cylindrification:

〈g : B → B′〉 7→ 〈A× g : A×B → A×B′〉

For partial maps 〈(dg, ĝ) : Dg → B × B′〉 : B ⇀ B′ and 〈(dg′ , ĝ′) :

D′g → B′ × B′′〉 : B′ ⇀ B′′, and a (“cylindrifying”) set A, recall the

following defining S/Ŝ diagram for g, g′, and h : = g′ ◦̂ g :

Dh

dh =

��

πl

��

πr

!!

ĥ

��

Df

dg

��

ĝ

!!

p.b. Dg′

dg′

��

ĝ′

!!

=

B
g /

h= g′ ◦̂g
=̂

:B′
g′ / B′′

Functorial – and pullback preserving – cylindrification with set A in-

side S leads to
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A×Dh

A×dh

��

A×πl

��

A×πr

%%

A×ĥ

��

A×Dg

= A×dg

��

A×ĝ

%%

p.b. A×Dg′

A×dg′

��

A×ĝ′

%%

=

A×B A×g /

A×h
=̂

5A×B′ A×g′ / A×B′′

Functoriality diagram for theory Ŝ

The “global” argument for functoriality of cylindrification in Ŝ

(and hence for bifunctoriality of ×) now reads:

Both A ×Dh and D(A×g′) ◦̂ (A×g) are projective limits of the lower-

two-rows part of the S diagram when coming with their respective

cones. Therefore they admit a “comparing” natural isomorphism, and

that’s what is sufficient for functoriality of cylindrification within the-

ory Ŝ.

Ŝ inherits from S transposition

Θ = ΘA,B(a, b) =def (b, a) = (r, `) :

A×B
∼=−→ B × A

as well as diagonal

∆ = ∆A(a) =def (a, a) = (id, id) :

A→ A× A
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and association

ASS = ASSA,B,C((a, b), c) =def (a, (b, c)) = (``, (r`, r)) :

((A×B)× C)
∼=−→ (A× (B × C))

It is obvious that Ŝ inherits naturality of the transformation families

ASS,Θ, and ∆.

Using these natural transformations, we get (from functoriality of

cylindrification) in fact bifunctoriality of (binary) product × within

theory Ŝ. This shows assertion (i) of the Structure theorem.

For proof of first half of assertion (ii), namely

f ◦̂ df =̂ f̂ : A ⇀ B

for given partial

f = 〈(df , f̂) : Df → A×B〉 : A ⇀ B

consider the following S/Ŝ diagram:

KP[df ]

`

��

r //

`

��

p.b.

Df

df

��

f̂

��
Df

df //

f̂

::A
f / B

Df

∆

==

id

̂̂
f=f̂

<<

Partial Map Definition diagram
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This diagram shows downwards inclusion

f ◦̂ df = (`, f̂ ◦ r) ⊆̂ f̂ = (idDf , f̂) : Df ⇀ B

via ` : KP[df ]
`−→ Df with f̂ embedded as its graph (idDf , f̂) .

The opposite (graph) inclusion ∆ : Df → KP[df ], given by reflex-

ivity of kernel pair KP[df ], is immediate.

For proof of second Ŝ-equality of assertion (ii), define opposite to

df : Df → A as

d−f =def 〈(df , [ ]f̂ ) : Df → A×Df〉 : A ⇀ Df

made right-unique by selecting Df minimal f̂ equivalence representant

[ ]f̂ = [α]f̂ =def min
Df
{α′ ≤ α : f̂(α′) =B f̂(α)} : Df → Df

minimal with respect to Cantor-order on S-setDf supposed pointed,

by â0 : 1→ Df say.

Get in fact the commuting Ŝ-diagram

Df

f̂

&&

=̂

A

d−f

O

f / B

This finishes the proof of (ii) and hence of the structure theorem

for partial p. r. map theory Ŝ q. e. d.

For our consistency considerations below, we strongly rely on
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7.1.3 Totality Lemma

(i) For a partial p. r. map

f = 〈(df , f̂) : Df → A×B〉 : A ⇀ B, in Ŝ

the following statements are equivalent:

(a) f : A ⇀ B is (an embedded) “total” p. r. map, an S map.

(b) its defined-arguments enumeration

df = df (â) : Df → A is a retraction.

(c) df : Df → A admits minimised opposite

d−f = d−f (a) = µ{â : df (â) = a} : A ⇀ Df

as an embedded S coretraction d−f : A→ Df , “minimum” µ

taken with respect to a Cantor ordering of (countable) Df .

(ii) The first factor f : A ⇀ B in an Ŝ composition

h = g ◦̂ f : A ⇀ B ⇀ C

when giving an (embedded) S-map h : A → C is itself an (em-

bedded) S-map:

A first p. r.-partial-composition factor of a (total) p. r. map is

itself (total) p. r.

(iii) Therefore any coretraction of theory Ŝ is an S-map.2

2J. Sablatnig has pointed to a serious problem with this assertion when taking

for coretraction the non-p. r. Ackermann function and as retraction its (partial)

opposite, problem see below.
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Proof:

(i) (a)→ (b): If S-map k : A → Df establishes Ŝ graph inclusion

〈id, g〉 ⊆̂ f = 〈df , f̂〉, then k : A → Df is a coretraction to

df : Df → A within S – f is defined on all of A –

diagram

Df

df

��
df

��

f̂

  
A

g // B

A

id=dg

OO

g

>>

k

CC

(b)→ (c) : Then embedded S map

d−f = d−f (a) = by def µ{â : df (â) = a} : A ⇀ Df

=̂ min{â ∈ Df : â ≤ k(a) ∧ df (â) = a} : A→ Df

is a coretraction to df : Df → A, as minimised coretraction

constructed out of coretraction k : A→ Df to df .

For less obvious (c)→ (a) consider the following S/Ŝ diagram,

with embedded S map

g = 〈dg, g〉 := 〈idA, f̂ ◦ d−f 〉 : A ⇀ B
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Df

df

��
df

��

f̂

  
A

f /
g

//

d−f

KK

B

A

id=dg

OO

g := f̂ ◦ d−f

>>

d−f

EE

We show for this g :

If d−f is an S coretraction to df , then g ⊆̂ f via d−f :

left triangle df ◦ d−f = idA = dg

and outer triangle f̂ ◦ d−f = g

as well as f ⊆̂ g, the latter since

dg ◦ df = idA ◦ df = df (domain comparison)

and – rule comparison assertion –

g ◦ df (â) = f̂ ◦ d−f ◦ df (â) = f̂(â) : Df → B (•)

(First retraction df , then coretraction d−f , followed by rule f̂).

We show (•) by right uniqueness of f = 〈df , f̂〉 : A ⇀ B, namely
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S ` [df (â) =A df ◦ d−f ◦ df (â) =A df ((d
−
f ◦ df )(â))] :

Df → A× A =−→ 2

S ` [f̂(â) =B f̂((d−f ◦ df )(â)) : Df → B ×B =−→ 2

Postcedent gives remaining S equation

g ◦ df = f̂ ◦ (d−f ◦ df ) = f̂ : Df → A (•)

for Ŝ inclusion f ⊆̂ g ≡ 〈idA, g〉, by equality definability for

theory S.

(ii) For f : A ⇀ B, g : B ⇀ C given consider – with notation

introduced for defined-arguments enumerations and rules – the

diagram below, showing their “total” composition

h = 〈(idA, h) : A→ A× C〉 : A→ C

This diagram enriches earlier composition diagram by the

data of h and comparison S map j : A → Dg ◦̂ f which estab-

lishes graph inclusion h ⊆̂ g ◦̂ f : A ⇀ C in
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Dg ◦̂ f

πl

��

πr

!!

ĝ ◦̂ f

��

Df

df

��

f̂

""

p.b. Dg

dg

��

ĝ

  

=

A
f / B

g / C

A

j

FF

k

<<

idA

OO

h

66

composition-total diagram for Ŝ

Define k : = πl ◦ j : A → Dg ◦̂ f → Df having coretraction prop-

erty df ◦ k = idA : A → Df → A inherited from comparison

property of j : A → Dg ◦̂ f . This proves the Lemma, by asser-

tion (i), (c)→ (a).

7.1.4 A counterexample?

Problem with 3rd assertion of the lemma:

Take for f : N → N the partial p. r, not primitive recursive, diago-

nalised Ackermann function f = f(a) := Ψ(a, a) : N ⇀ N – cf. Ap-

pendix A – and for g = g(b) : N ⇀ N the (partial) function inverse

to f – given set theoretially by the opposite graph {(f(a), a) : a ∈ N}.
Then g ◦̂ f =̂ idN is primitive recursive – and first composition

factor (coretraction) f is not!
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The objection works in case of set theory, where maps, and partial

maps can be defined as (even actually infinite) lists of argument/value

pairs.

But if you want to define the list-defined retraction g above as a

partial p. r. (!) map g : N⇀ N within theory Ŝ, you are lead – in the

setting of the lemma – to try as “retraction” g : N ⇀ N a partial

map of form

g = 〈(dg, ĝ) : Dg → N×N〉 : N⇀ N to have S components

Dg =def {(b, a) ∈ N×N : δg(b, a)} ⊆ N×N, (opposite) graph,

δg = δg(b, a) : N×N→ 2 a p. r.(!) predicate

dg = dg(b, a) =def b = ` ◦ ⊆ :

{N×N : δg}
⊆−→ N×N `−→ N

(p. r.) defined arguments enumeration, and

ĝ = ĝ(b, a) =def min{a′ ≤ a : δg(b, a
′)} :

{N×N : δg} ⊆ N×N→ N

p. r. rule

“The” choice for graph predicate δg would be, in present opposite-

to-Ackermann case, opposite predicate

δg = δg(b, a) := [Ψ(b, b) = a] :

N×N→ (N×N)×N)
Ψ×N−−−→ N×N =−→ 2

opposite to the Ackermann graph

δf (a, b) = [Ψ(a, a) = b] : N×N→ 2

of first factor f : N⇀ N in the composition g ◦̂ f =̂ idN : N⇀ N⇀ N.
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But graph predicate δg : N×N⇀ 2 is not primitive recursive, not

in S as required for a graph predicate to define a p. r.(!)-partial map:

The Ackermann function Ψ is recursive, total, but not primitive

recursive, since Ψ(a, a) grows too fast, see Appendix A and refer-

ences there. Ψ is only double recursive, admits resolution just into

a Complexity Controlled Iteration. So graph Dg = {N × N : δg} of

opposite partial map g = 〈(dg, ĝ) : Dg → N×N〉 : N⇀ N would not

be primitive recursive. g would not be partial p. r. , not in Ŝ.

To summarise: Ackermann-opposite g (as tried “naturally” above),

cannot be partial p. r.(!). It is not in our frame theory Ŝ ⊃ S as re-

quired in the Totality Lemma being discussed. The Ackermann func-

tion itself is partial p.r. It is not invertible in our constructive context

based on primitive recursion, not a coretraction in Ŝ.

This discusion shows the technical, subtle character of the lemma:

it bears on the difference of (partial) recursive maps in set theoretical

power/complexity vs. frame Ŝ of partial p. r. maps – with p. r. graph

predicates in particular. We rely on this distinction in consistency

discussion. In Appendix A we discuss “the” alleged counterexample

again, in terms of (Computer Science) while loops.

Note again: In the framework of this book, all sets are S sets, p. r.

predicative subsets of PR2 objects, subsets of cartesian products of 1,

2, and N. So the only partial maps f : A ⇀ B available in the context

of this book have graph set Df in S, they are partial p. r. maps.
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7.2 Partial partial maps

For reduction of partial partial p. r. maps to (just) partial p. r. maps

consider diagram

Dh

defh=γh

��

Dγf

dh: = d̂f

��

dγf

��
γ̂f

��

̂̂
f = :ĥ





Df

d−γf

J

df

	

γf

� f̂

�

A×B
`

||

r

""
A

f /̂̂=
h

4 B

Closure diagram for extension by partial maps

The diagram shows a partial partial p. r. map

f = 〈γf : Df ⇀ A×B〉 : A ⇁ B

defined by its (partial) graph γf : Df ⇀ A× B in turn defined as an

S-map

γf = (dγf , γ̂f) : Dγf → A×B
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As p. r. partial representant of partial p. r. partial map f : A ⇁ B

take the Ŝ-map h : A ⇀ B given by the frame in the diagram above:

h = 〈(dh, ĥ) : Dh → A×B〉 : A ⇀ B

=def 〈(d̂f ,
̂̂
f) : Dγf → A×B〉 : A ⇀ B

= by def 〈γ̂f : Dγf → A×B〉 : A ⇀ B

This shows: Partial partial p. r. maps are (represented by) partial

p. r. maps – and so on: partial partial partial p. r. maps by partial p. r.

maps etc.

This gives in particular representation of an arbitrarily nested

while loop by one “flat” while loop with (one) p. r. control predi-

cate controlling iteration of (one) p. r. endomorphism; for while loops

as partial p. r. maps see section content driven loops.

7.3 Recursion without quantifiers

We define µ-recursion within the free-variables framework of partial

p. r. maps as follows:

Given an S predicate ϕ = ϕ(a, n) : A×N→ 2, the Ŝ-map

µϕ = 〈(dµϕ, µ̂ϕ) : Dµϕ → A×N〉 : A ⇀ N
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is to have (S-)components

Dµϕ =def {A×N : ϕ} ⊆ A×N
dµϕ = dµϕ(a, n) =def a = ` ◦ ⊆ :

{A×N : ϕ} ⊆−→ A×N `−→ A and

µ̂ϕ = µ̂ϕ(a, n) =def min{m ≤ n : ϕ(a,m)} :

{A×N : ϕ} ⊆ A×N→ N

Comment:

• This definition of µϕ : A ⇀ N is a static one. The subset-

enumeration of defined arguments is here given just by the “prob-

lem” ϕ ⊂ A × N itself: Assume you know already an a ∈ A

coming with a “solution” n ∈ N : (a, n) ∈ ϕ. Then µϕ(a) is

defined, and µϕ(a) is the minimal m ≤ n such that ϕ(a,m).

• If you want to make visible the defined arguments enumeration

by a p. r. enumeration d : N → A, you may take codomain

restriction N → {A ×N : ϕ} of Cantor count ct : N → A ×N
followed by left projection, enumerating those arguments a ∈ A
for which “terminating” n are “given”.

• No need – and in general no “direct” possibility – to decide, for

a given a ∈ A, if a is of form a = dµϕ(a, n) with (a, n) ∈ Dµϕ

i. e. if exists n ∈ N such that ϕ(a, n). In particular, if

Dµϕ = {A×N : ϕ} = ∅A×N,

then dµϕ as well as µ̂ϕ are empty maps.
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µ-Lemma: Ŝ admits the following (free-variables) scheme (µ) com-

bined with (µ!) – uniqueness – as a characterisation of the µ-operator

〈ϕ : A×N→ 2〉 7→ 〈µϕ : A ⇀ N〉 above:

ϕ = ϕ(a, n) : A×N→ 2 S map (“predicate”),

(µ)

µϕ = 〈(dµϕ, µ̂ϕ) : Dµϕ → A×N〉 : A ⇀ N

is an Ŝ-map such that

S ` ϕ(dµϕ(â), µ̂ϕ(â)) = trueDµϕ : Dµϕ → 2,

+ “argumentwise” minimality:

S ` [ϕ(dµϕ(â), n) =⇒ µ̂ϕ(â) ≤ n] : Dµϕ ×N→ 2

as well as uniqueness by maximal extension:

f = f(a) : A ⇀ N in Ŝ such that

S ` ϕ(df (â), f̂(â)) = trueDf : Df → 2

S ` ϕ(df (â), n) =⇒ f̂(â) ≤ n : Df ×N→ 2

(µ!)

S ` f ⊆̂ µϕ : A ⇀ N (inclusion of graphs)

[Requiring this maximality of µϕ is necessary since – for example –

(µ) alone is fulfilled already by the empty partial function ∅A : A ⇀ N]

Proof of µϕ : A ⇀ N to satisfy upper, “existence” part “(µ)” of the

scheme is straigthforward by definition of µϕ. What remains to be

proved is uniqueness-by-maximal-extension scheme (µ!) :
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Let a partial map

f = 〈(df , f̂) : Df → A×N〉 : A ⇀ N

be given such that f fullfills the antecedent of scheme (µ!). Then the

S map

j = j(â) := (df (â), f̂(â)) : Df → A×N

defines in fact, by the first premise on f, namely

ϕ(df (â), f̂(â)) = trueDf (â) : Df → 2

an S-map j : Df → {A ×N : ϕ} which establishes the wanted graph

inclusion

j : [f ⊆̂µϕ : A ⇀ N]

as shows the following (commuting) S/Ŝ-diagram:

2

A×N

dµϕ
= `

||

ϕ

OO

µ̂ϕ

""
A

µϕ /

f
/ N

Df

df

aa

j= (df ,f̂)

OO

f̂

<<

µ-applied-to-S-predicates diagram
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Here, by definition of µ̂ϕ = µ̂ϕ(a, n) : Dµϕ = A×N→ N we have

in particular

µ̂ϕ ◦ j(â) = µ̂ϕ(df (â), f̂(â))

= min{m ≤ df (â) : ϕ(df (â),m)} : Df → A×N→ N

= f̂(â) : Df → N

The latter by assumed minimum property of

f = 〈(df , f̂) : Df → A×N〉 : A ⇀ N

Together with (trivial)

dµϕ ◦ j = `A,N ◦ (df , f̂) = df : Df → A×N→ A

this gives in fact (remaining) graph-inclusion f ⊆̂µϕ : A ⇀ N via

j = (df , f̂) : Df → Dµϕ = A×N q. e. d.

Remark: Within Peano-Arithmétique PA and hence also within

set theory, our µϕ : A ⇀ N equals

µϕ = 〈(⊆, µ̂ϕ) : Â→ A×N〉 : A ⊃ Â→ N

with Â = {â ∈ A : ∃nϕ(â, n)}, and µ̂ϕ(â) = min{m ∈ N : ϕ(â,m)} :

Â → N i. e. it is given there by the classical – partial – minimum

definition. But this definition lacks constructivity since Â ⊆ A is not

p. r. decidable apriori.

What about the converse direction to µ-Lemma above? In fact:

Partial p. r. ≡ µ-recursion, Instance of Church’s Thesis:

Any partial S-map

f = 〈(df , f̂) : Df → A×B〉 : A ⇀ B



Recursion without quantifiers 151

is represented – within theory Ŝ – by an “ =̂ ” equal µ-recursive

Ŝ-map

g = (f̂ ◦ countDf ) ◦̂µϕf :

A ⇀ N→ Df → B

ϕf = ϕf (a, n) : A×N→ 2 suitable, namely

ϕf = ϕf (a, n) =def [a =A df ◦ countDf (n)] :

A×N→ 2 (p. r.)

countDf : N→ Df being a Cantor type (p. r.) count of Df .

Remark:

countDf = countDf (n) : N→ Df = {X : Df : X→ 2}

is easily constructed if Df comes with a point, â0 : 1→ Df say. If not

– or if you cannot name such point – just add one, namely injection

ι : 1→ 1+Df into the sum, replace Df by 1+Df , A by 1+A, B by

1+B, df by 1+ df : 1+Df → 1+A, f̂ by 1+ f̂ : 1+Df → 1+B,

and keep track of the added point.

Df is “now” pointed, and admits – because of this – a retraction

countDf : N→ Df by linear (well) order on Df inherited from that of

X and anchored at Df ’s point, “defined element” â0 : 1→ Df ⊆ X.

Proof of partials to be µ-recursive maps: Consider the following S/Ŝ-

diagram:
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Df

i

��

df

��

f̂

''

=̂

= A
f /
g

/

µϕf

 

=̂

B

Dµϕf

j

==

dµϕf

<<

µ̂ϕf

// N
count

//

=̂
(def)

Df

f̂

OO

Partial p. r. map ≡ µ-recursion diagram

All sets and (partial) maps in this diagram have been defined

above with the exception of S comparison maps i : Df → Dµf and j

in the other direction.

We define these two maps “suitably” by

Dµϕf = by def {A×N : ϕf}
= by def {(a, n) : df ◦ countDf (n) =A a},
i = i(â) =def (df (â),min{m ≤ n : df (countDf ) =A df (â)} :

Df → Dµϕf

and

j = j(a, n) =def countDf (min{m ≤ n : df (count(m)) = a}) :

A×N ⊇ Dµϕf → Df

By definition of ϕf : A×N→ 2 and then – general for such a predicate,

see above – of

µϕf = 〈(dµϕf , µ̂ϕf ) : Dµϕ → A×N〉 : A ⇀ N
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and – eventually – (alleged) representant

g =def f̂ ◦ countDf ◦̂µϕf : A ⇀ N→ Df → B

of f, this Ŝ-diagram commutes; µ-recursive representant involves just

(two) S-maps, namely p. r. retraction count = countDf : N→ Df and

rule f̂ : Df → B (given), as well as one genuinely µ-recursive map

µϕf : A ⇀ N : µ-recursion applied to S-predicate ϕf : A × N → 2.

Commutativity of this Ŝ-diagram shows

i : [f ⊆̂ g : A ⇀ B], j : [g ⊆̂ f : A ⇀ B]

and hence f =̂ g : A ⇀ B.

An arbitrary partial p. r. map f : A ⇀ B in Ŝ admits within Ŝ a

representation g : A ⇀ B, obtained via suitable S-map(s) and one

µ-recursive one, µϕf : A ⇀ N, defined in turn “over” the S-predicate

ϕf : A×N→ 2 above q. e. d.

Corollary: define theory µS over S and within Ŝ by closure

of S under the µ-operator – applied to S-predicates – merged with

monoidal-theory closure. Then this subtheory µS is in fact isomorphic

to theory Ŝ as a diagonal monoidal theory: S ⊂ µS ∼= Ŝ.

Both theories have cartesian p. r. theory S embedded as a diago-

nal monoidal subcategory, and the embedding is compatible with the

isomorphism µS ∼= Ŝ.

Our conclusion so far is:

• We can eliminate formal existential quantification – as well as

(individual, formal) variables – from the theory of µ-recursion

by interpreting the µ-operator into theory Ŝ ⊃ S of partial p. r.

maps.
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• Conversely, the µ-operator when applied to S-predicates: p. r.

predicates ϕ = ϕ(a, n) : A×N→ 2, generates all Ŝ-morphisms

– partial S-maps – out of S via necessarily formally partial com-

position with suitable S-maps.

7.4 Content driven loops

By a content driven loop we mean an iteration of a given step endo

map whose number of performed steps is not known at entry time into

the loop – as is the case for a p. r. iteration f §(a, n) : A×N→ A with

iteration number n ∈ N – , but whose (re) entry into a “new” endo

step f : A→ A depends on content a ∈ A reached so far:

This (re) entry or exit from the loop is now controlled by an

S predicate χ = χ(a) : A→ 2.

Example: A while loop wh [χ : f ] : A ⇀ A for given p. r. control

predicate χ = χ(a) : A→ 2 and (looping) step endo f : A→ A.

Classically, with variables, such wh = wh [χ : f ] would be “defined”

– in pseudocode – by

wh(a) : =

[a′ := a;

while χ(a′)

do a′ := f(a′) od;

result := a′]

The formal version of this – within a classical, element based setting
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–, is the following partial-(Peano)-map characterisation:

wh(a) = wh[χ : f ](a) =

a if ¬χ(a)

wh(f(a)) if χ(a)
: A ⇀ A

But can this dynamical or bottom up “definition” be converted into a

p. r. enumeration of a suitable graph “of all argument-value pairs” in

terms of an Ŝ-morphism

wh = wh[χ : f ]

= 〈(dwh, ŵh) : Dwh → A× A〉 : A ⇀ A?

In fact, we can give such suitable static definition of

wh = wh[χ : f ] : A ⇀ A within Ŝ ⊃ S as follows:

wh =def f § ◦̂ (idA, µϕ [χ:f ])

= f § ◦̂ (A× µϕ [χ:f ]) ◦̂∆A :

A→ A× A ⇀ A×N→ A, where

ϕ = ϕ [χ:f ](a, n) =def ¬χ f §(a, n) : A×N→ A→ 2→ 2

Within a quantified arithmetical theory like PA, this Ŝ-definition of

wh [χ : f ] : A ⇀ A fullfills the classical characterisation quoted above,

as is readily shown by Peano-Induction “on” n : = µϕ [χ:f ] (a) : A ⇀ N,

at least within PA and its extensions.

[Classically, partial definedness of this – dependent – induction

parameter n causes no problem: use a case distinction on definedness

of µϕ[χ:f ](a)“∈”N. Even in our quantifier-free context such dependent

induction on a partial dependent induction parameter is available.]
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In this generalised sense, we have – within theory Ŝ ⊃ S – all

while loops, at least those with control χ : A → 2 and step endo

f : A→ A within S.

It is obvious that such wh[χ : f ] : A ⇀ A is in general only

partial – as is trivially exemplified by integer division by divisor 0

which would be endlessly subtracted from the dividend, although in

this case control and step are both p. r.

By the classical characterisation of these while loops above, we

are motivated for its generalisation to the S/Ŝ case:

Characterisation Theorem for while loops over S within theory

Ŝ : For χ : A→ 2 (control) and f : A→ A (step) both S-maps, while

loop wh = wh[χ : f ] : A ⇀ A (as defined above) is characterised by

the following implications within Ŝ :

Ŝ ` [¬χ ◦ a =⇒ wh ◦̂ a = a] : A ⇀ 2 and

Ŝ ` [χ ◦ a =⇒ wh ◦̂ a = wh ◦̂ f ◦ a] : A ⇀ 2

where use of “sort of” free variable ‘a’ is to help intuition, formally a

is just another name for idA : A→ A.

That wh =̂ wh ◦̂ a : A ⇀ A fullfills the implications of (alleged)

characterisation is obvious. We omit the proof of wh to be unique

with these properties within theory Ŝ.

7.5 A further case of Church’s Thesis

• The concept of a partial p. r. map is equivalent to that of a µ-

recursive (partial) map. It is another – free-variables, formally:
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variable-free – notion of a general recursive (partial) map.

All this in (and over) the categorical framework of cartesian p. r.

theory S with (scheme of) abstraction of its predicates – as well

as with equality predicates on its sets.

• Same for while loops wh = wh [χ : f ] : A ⇀ 2 : They obviously

generate all µ-recursive (partial) maps: For given p. r. predicate

ϕ : A×N→ 2

µϕ =̂ r ◦̂wh [¬ϕ : (A× s)] :

A×N⇀ A×N→ N

satisfies the characteristic implications for the µ-operator.

Therefore the while-operator wh generates all partial maps in

Ŝ ⊃ S, even in just one step out of predicate/endo pairs

χ : A→ 2 and f : A→ A in S,

see reduction of partial partial p. r. maps to partial p. r. maps.

• Theory Ŝ is closed under the while operator, as it is – and

because it is – under the µ-operator.

• A formal consequence of the last two assertions is in particular a

fact known since long time to Computer Scientists: “one while

loop is enough”, starting from suitable for loop programs to

define S-maps χ : A→ 2 and f : A→ A, “data” for while loop

wh [χ : f ] : A ⇀ A.

Since for loops – equivalent to p. r. maps – can in turn be writ-

ten as (trivial) while loops, while closure of the fundamental
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maps: 0, s as well as substitutions – logical functions in the sense

of Eilenberg/Elgot 1970 – reaches all of µS, but presumably

not in while nesting depth 1, as is the case when starting with all

for loops. My guess: for such a one-step closure by the while

operator you need case distinctions, and these come in here –

formally – as p. r. maps on their own right, namely as induced

maps out of a sum A
ι // A+B B

κoo

From a logical point of view, there are – at least – the following

Arithmetics Complexity Problems

• Does theory PR admit strict, consistent strengthenings or is it

a simple theory, will say that it admits its given notion of equal-

ity and the indiscrete (inconsistency) equality as only “congru-

ences”?, cf. a simple group which has as normal subgroups only

itself and {1}. Because of reasons to be explained later, my guess

is: PR admits non-trivial strengthenings, in particular I suppose

that the p. r. trace of PA is a strict strengthening of PR. But

this only, if PA is consistent.

• Already at start we possibly have such a strengthening: If free-

variables (“free variables” in the classical sense) primitive re-

cursive arithmetic PRA is defined to have as its terms all map

terms obtainable by the (full) scheme of primitive recursion, and

as formulae just the defining equations for the maps introduced

by that scheme, then I see no way to prove all of the usual semir-

ing equations for N :
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We need Freyd’s uniqueness (FR!) of the initialised iterated:

From this Horn clause we can show (!) in particular Good-

stein’s uniqueness rules U1 to U4 upon which his proof of the

semiring properties of N is based. He takes these rules as ax-

ioms.

My guess is – if I have understood right the definition of PRA,

that PR is a strict strengthening of PRA at least if there is no

“underground” connection to the set theoretic view of maps as

(possibly infinite) argument-value lists.

• Conjecture: Iterative descent theory πR in subsequent chap-

ters, defined over theory PR by axiom of non-infinite iterative

descent, is a simple p. r. theory.

At least this should be the case for (formally) stronger theory

ΩR of complexity controlled iteration with complexity values in

(linearily) ordered semiring Ω = N[ω1, ω2, . . .] of polynomials in

several variables.
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Chapter 8

Evaluation

We consider codes and coding of p. r. maps, more precisely: of maps

(and predicates) of theory S of primitive recursion with specific boolean

truth algebra 2 and predicate-into-subset abstraction. We evaluate

these map codes on their (fitting) arguments back into theory S. This

coding and evaluation takes place in p. r. theory S as well as in finite

iterative descent theory πR = S + (π) which strengthens theory S.

Evaluation is introduced as a CCI, a Complexity Controlled It-

eration, a special while loop which cannot loop endlessly as such –

additional axiom (π) below.

Evaluation ε of PR2 map codes turns out to be objective – as far

as terminating – it reflects “concrete” map codes pf : A → Bq into

the respective maps: ε( pfq , ) = f.

S’s notion of equality between maps has an “internal” homologue:

enumerated internal S equality f =̌ g between codes.

Arithmetically central theorem, on termination conditioned sound-

ness, lets evaluation turn each internal equality of S into an objective

163
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predicative equality, provided that deduction tree evaluation termi-

nates on the (internal) deduction tree for that internal equation.

Iterative descent theory πR is defined by adding the axiom schema

of non-infinite descent of CCI’s: Complexity Controlled Iterations.

8.1 Universal sets

8.1.1 Strings and polynomials

Strings a = a0 a1 . . . an of natural numbers are coded as prime power

products

2a0 · 3a1 · . . . · pann ∈ N> = N>0 ⊂ N
iteratively defined as

((2a0 · 3a1) · . . .) · pann ∈ N>0

Euclidean projection family

π = πj(a) : N×N> → N,

is characterised by

a = p
π0(a)
0 · pπ1(a)

1 · . . . · pπa(a)
a

It evaluates/interpretes “code” a ∈ N> into string

π0(a)π1(a) . . . πa(a),

in general many trailing zeros.
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Strings are identified with/interpreted as “their” polynomials

p(X) ≡ 0 or

p(X) =
n∑
j=0

ajX
n = a0X

0 + . . .+ anX
n, an 6= 0,

degree deg p(X) = n

p(ω) ≡ 0 or

p(ω) =
n∑
j=0

ajω
j = a0 + a1ω

1 + . . .+ anω
n, an > 0,

ω an indeterminate for (arbitrarily) big natural numbers.

Addition (and truncated subtraction as well as equality) are de-

fined coefficientwise, and product as Cauchy product (folding)

p(X) · q(X) = (
m∑
i=0

aiX
i) · (

n∑
j=0

bjX
j) =def

m+n∑
k=0

aibkriX
k

What we need in the sequel is special product

p(ω) · ω = (
n∑
j=0

ωj) · ω =
n∑
j=0

ajω
j+1

Order of polynomials is first by degree, second by pivot coefficient,

and then – if these are equal – by comparison of the two polynomials

with their equal pivot monomes removed, recursively, down to the zero

polynomial (which has no degree).

Call N[ω] the linearily ordered semiring of (coefficient strings) of

these polynomials.

The linear order has – intuitively and formally within set theory

– only finite descending chains.
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8.1.2 Internal numerals

Numeralisation family ν is p. r. defined within S by

ν(false) = ν2(false) = pfalseq :

1 ≡ {1 : true1} → 21 ⊂ PR2 ⊂ N
gödel number of false

ν(true) = ν2(true) = ptrueq : 1→ 21 ⊂ PR2

gödel number of true

ν(0) = p0q : 1→ N1 ⊂ PR2

gödel number, utf8 code of 0

ν(1) = p(q psq p◦q p0q p)q

= p(q ∗ psq ∗ p◦q ∗ p0q ∗ p)q : 1→ N1

string concatenation of symbol codes

ν(n+ 1) = 〈 psq � ν(n)〉 ∈ N1

where � ≡ p◦q , 〈 ≡ p(q , 〉 ≡ p)q

This internal numeralisation distributes the “elements” of 2 and

numbers of NNO N over N ≡ {N : trueN}, with suitable gaps to

receive in particular the codes of any other symbols of object language

S.

Numeralisation extends to all objects A of PR2 and then to the
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sets of S recursively as follows:

ν1 = pid1q : 1→ 11

⊂ PR2 ⊂ S ⊂ N ≡ {N : trueN}
νA×B = νA×B(a, b) = 〈νA(a); νB(b)〉 :

A×B → (A×B)1 ⊂ PR2 ⊂ S

ν{A:χ}(a) = νA(a) : {A : χ} → {A : χ}1 ⊂ S

Numerals predicate Lemma

Enumeration ν : N → N (out of PR2) defines a characteristic p. r.

image predicate im[ν] : N→ 2 (out of PR2), and by this S set

Ṅ = νN = {N : im[ν]} ⊂ N ≡ {N : trueN}
of (enumerated) internal numerals

Proof: Use iterative ‘∨’ for definition of

im[ν] : im[ν](c)

= [c = ν(0)] ∨ [c = ν(1)] ∨ [c = ν(2)] ∨ . . . ∨ [c = ν(n)]

= max{n : ν(n) ≤ c} : N→ N

ν : N→ N has retractive codomain restriction

ν̇ : N→ Ṅ = {N : im[ν]}

and is an iso with p. r. inverse

ν̇−1 = ν̇−1(c) = min{n : n ≤ c ∧ ν(n) = c} : Ṅ
∼=−→ N q. e. d.
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Extend these definitions to numeralisation – within S – of PR2

products:

A,B PR2 objects, νA : A→ A1, νB : B → B1 given

(first given for A = B = N in PR2)

νA×B(a, b) =def 〈νA(a); νB(b)〉 : A×B → (A×B)1

Retractive codomain restriction ν̇ : N → Ṅ is extended to PR2

products as follows:

A,B PR2 objects, νA : A→ A1, νB : B → B1

Ȧ = νA = {N : im[νA]}, Ḃ = νB = {N : im[νB]}

ν̇A : A
∼=−→ Ȧ = νA, ν̇B : B

∼=−→ Ḃ = νB given

(first given for A = B = N)

im[νA×B](c) = max{n : ν(n) ≤ c} : N→ N

ν̇−1
A×B(c)

= ctA×B min{n ≤ c : νA×B(n) = c} :

ν(A×B)
∼=−→ A×B ≡ {A×B : trueA×B}

⊂ {N : trueN}
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Numeralisation extension to S sets

Extend numeralisation definition to predicative subsets by

ν{A:χ}(a) =def νA(a) : {A : χ} → {A : χ}1 ⊂ {N : true}
ν̇{A : χ} =def {N : im[ν{A:χ}]} ⊂ {A : χ}1 where

im[ν{A:χ}](c) =def ∨n≤c [c = ν{A:χ}(n)] : N→ 2,

χ supposed pointed, χ(a0) = true

for a given point a0 : 1→ A, usually

a0 = 0A, 0N = 0, 01 = id1, 0A×B = (0A, 0B)

ν̇−1
{A:χ}(c) = ct{A:χ}min{n ≤ c : ν{A:χ}(n) = c} :

ν({A : χ})
∼=−→ {A : χ} ⊂ S ⊂ {N : trueN}

ν̇−1
{A:χ} : ν{A : χ} in fact inverse to

ν{A:χ} : {A : χ}
∼=−→ ν{A : χ} ⊂ {N : trueN}

8.1.3 Universal set of internal pairs

Define universal sets

X = {N : X} =
⋃̇

A in PR
Ȧ ⊂ N and

X2 =
⋃̇

A in PR2
Ȧ =

⋃
{A:χ} in S

ν{A : χ} ⊂ N

of all numerals and (possibly nested) numpairs/logic numpairs first by

p. r. enumeration.
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Here is the enumeration of X2 (extending that of X):

ν2(false) = pfalseq , ν2(true) = ptrueq ∈ X2

ν(0) = by def p0q ∈ X ⊂ X2

n ∈ N ⇒ ν(s n)) = 〈 psq � ν(n)〉 ∈ X ⊂ X2

x ∈ X ∧ y ∈ X ⇒ 〈x; y〉 ∈ X ⊂ X2

x ∈ X2 ∧ y ∈ X2 ⇒ 〈x; y〉 ∈ X2

These enumerations have characteristic p. r. image predicates

X = X(c) : N→ 2, X2 = X2(c) : N→ 2 defined as follows:

X(c) =

true if ∨n≤c ctX(n) = c

false otherwise, i. e. if ∧n≤c ctX(n) 6= c

X2(c) =

true if ∨n≤c ctX2(n) = c

false otherwise, i. e. if ∧n≤c ctX2(n) 6= c

ctX : N → N, ctX2 : N → N are the p. r. enumeration/counting

processes given by cyclic application of the rules above generating X,

X2 as (predicative) sets:

Variable c ∈ N works in fact as an upper bound, since obviously

ctX(n), ctX2(n) > n, n ∈ N free.

8.2 Gödelisation, map coding

Since boolean categorical p. r. theory S comes formally without vari-

ables and quantification, we can code S maps into NNO N simply
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by their LATEX unicode source codes, the Byte strings seen as (bi-

nary) natural numbers, namely arrows pfq : 1→ N, numbers pfq ∈
S(1,N).

These codes enumerate internal theory S ⊂ N, in fact a predicative

subset of N since later enumeration cycles insert longer code strings.

On the way are enumerated, predicatively defined, internal hom

sets, code sets BA into which are inserted the codes pfq for

f ∈ S(A,B).

• Codes of basic maps

pbaq ∈ N for ba ∈ bas = basPR2 = basPR ∪ bas2

basPR = {0, s, idA,ΠA, `A,B, rA,B : A,B in PR}

= {0, s, idA,ΠA, `A,B, rA,B : A,B PR objects} :

p0q = unicode[0] ∈ N1 ⊂ PR2 ⊂ N,

p0q ∈ PR2 is a PR2 map code in set N1 of map codes from 1

to N.

Analogously for the other basic map codes of PR2 :

psq = unicode[\mathrm{s}] ∈ NN ⊂ PR2 ⊂ N

pidq A = pidAq ∈ AA

pΠq A = pΠAq ∈ 1A

p`q A,B = p`A,Bq ∈ AA×B

prq A,B = prA,Bq ∈ BA×B ⊂ PR2

and for the maps in

bas2 = {true,r, sign, pret} :
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ptrueq ∈ 21

prq ∈ 22×2

psignq ∈ 2N

ppretq ∈ N2

• Coding map composition of PR2 ⊂ S:

With � = p◦q

f : A→ B, g : B → C

p(g ◦ f)q = 〈 pgq � pfq 〉 ∈ CA

internal composition:

f ∈ BA, g ∈ CB

〈g � f〉 = p(q g p◦qf p)q ∈ CA

〈g � f〉 ∈ N is recognised as code p(g ◦ f)q of the composition

of maps g with f if f is “already” recognised as f = pfq and

g as g = pgq , recursively.

Similar for the code cases below, this defines coding as an injec-

tive meta operation, and map code sets BA by p. r. enumeration,

turned a posteriori into predicative subsets of

N ≡ IN = {N : trueN} NNO of S.

• Coding PR2 induced maps: with 〈; 〉 = p(, )q
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f : C → A, g : C → B

p(f, g)q = 〈 pfq ; pgq 〉 ∈ (A×B)C

internal inducing:

f ∈ AC , g ∈ BC

〈f ; g〉 = p(qf p, q g p)q ∈ (A×B)C

• Coding PR2 map products (redundant): with # = p×q

f : A→ A′, g : B → B′

p(f × g)q = 〈 pfq# pgq 〉 ∈ (B ×B′)A×A′

Internal map product:

f ∈ A′A, g ∈ B′B

〈f#g〉 = p(qf p×q g p)q ∈ (A′ ×B′)A×B

• Coding PR2 endomap iteration: with $ = p§q

f : A→ A

pf §q = pfq $ ∈ AA×N

internal iteration:
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f ∈ AA

f $ = f p§q ∈ AA×N

• coding S maps between S abstraction sets

f : {A : χ} → {B : ϕ}, χ : A→ 2, ϕ : B → 2 in S

p((χ, f), ϕ)q = 〈〈 pχq ; pfq 〉; pϕq 〉 ∈ {B : ϕ}{A:χ}

where {B : ϕ}{A:χ} = {〈〈 pχq ;f〉; pϕq 〉 :

f ∈ BA ∧ pχq p⇒ q 〈 pϕq � f p=Aq ptrueAq 〉}

⊂ ((2A ×BA)× 2B) ⊂ ((PR2× PR2)× PR2)

Internal composition, internal map inducing into products as well

as internal iteration map of internal endomaps for theory S = PR2 +

(abstr) in place of PR2 is readily obtained from the above.
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8.3 Internal, arithmetised equality

Definition: The objective equality of S has an internal-equality (enu-

meration) analogon – a list

eq = eq(k) = =̌k : N→ S× S ⊂ N×N
k 7→ 〈f =̌k g〉, k ∈ N free,

f = ` ◦ eq(k), g = r ◦ eq(k) : N→ PR2 dependent variables:

we have written f =̌k g for

eq(k) = (f , g) ∈ PR2× PR2 ⊂ N×N,
k,f , g ∈ N free

This list 〈f =̌k g〉 : N → PR2 × PR2 is given by “spiral form” p. r.

count of internal deduction trees, for example

f =̌k h

dtreek = ⇑

f =̌i g

⇑

dtreeii dtreeji

g =̌j h

⇑

dtreeij dtreejj

i, j < k, ii, ji < i, ij, jj < j

Extra case of internally equal restrictions

f =̌k g ∈ S({A : χ}, {B : ϕ})

〈〈 pχq ;f〉; pϕq 〉 =̌a
k 〈〈 pχq ; g〉; pϕq 〉

dtreek =

〈 pχq p⇒ q 〈f p=Bq g〉〉 =̌PR2
i ptrueAq
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The PR2 deduction tree cases are modified by replacing internal

PR2 maps

f ∈ BA ⊂ PR2 by internal S maps

〈〈 ptrueAq ;f〉; ptrueBq 〉 ∈ {B : ptrueBq }{A: ptrueAq }.

The internal deduction trees are counted in lexicographic order so

that in particular a branch of such a tree is counted before that tree,

and so that (internal) equations going into a first proof (deduction

tree) for/of a given (internal) equation appear in the (spiral) list eq

with earlier indices than the (internal) equation considered, c. f. the

transitivity deduction tree above.

In the proof of termination conditioned soundness below, such

(internal) deduction trees are – top down – substituted with (free-

variable) arguments. The only problematic case of this argumentation

arises in case of compatibility of composition with equality.

8.4 Numeralisation naturality

For constructive set theory S as well as its strengthening πR below,

consider the (covariant) constructive S internal hom functor

hom(A, ) = ( )A : S −→ S at set A, defined on sets by

BA = BA/=̌, equality =̌ the enumerated internal equality

=̌ : N→ BA ×BA of S.

On maps g : B → B′ internal hom functor ( )A is defined by

gA = gA(f) = pgq � f : BA → B′A.

Compatibility with internal notion of equality:

f =̌i f̃ =⇒ gA(f) = pgq � f =̌k(i, pgq ) pgq � f̃ = gA(f̃)
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by internal Leibniz substitutivity.

( )A is a functor, since it preserves identies:

(idB)A(f) = pidBq � f =̌f = idBA(f)

and preserves composition:

(g′ ◦ g)A(f) = pg′ ◦ gq � f
=̌ ( pg′q � pgq )� f =̌ pg′q � ( pgq � f)

= g′A(gA(f)) = (g′A ◦ gA)(f)

Naturality Lemma

• Family νA : A→ A1 = A1/=̌ = A1/=̌a

is a natural transformation, from identity functor IDS to (con-

structive) internal hom functor ( )A : S→ S,

will say: for f : A→ B in S

νB ◦ f = pfq � νA = f1 ◦ νA

In diagram form:

A
f //

νA
��

=

B

νB
��

A1
f1 // B1 (∗)

a � f //
_

νA
��

f(a)
_

νB
��

νA(a) � f1 // pfq � νA(a) =̌ νBf(a)
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• For restrictrion ḟ : Ȧ→ Ḃ of f1 : A1 → B1 this gives a natural

equivalence

A
f //

ν̇A ∼=
��

=

B

ν̇B ∼=
��

Ȧ
ḟ // Ḃ (∗∗)

Proof of naturality by structural recursion on f : A→ B in S :

• Anchor cases

– f = id : A→ A :

(νA ◦ idA)(a) = νA(a) =̌ pidAq � (νA(a))

– f = 0 : 1→ N :

ν ◦ 0 = ν(0) = p0q =̌ p0q � pid1q

– non-trivial case f = s : N→ N :

(ν ◦ s)(a) = ν(s(a)) = by def psq � ν(a)

– f = false : 1→ 2 :

ν ◦ false = ν(false) = pfalseq =̌ pfalseq � pid1q

– f = true : 1→ 2 : dito
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– f = sign : N→ 2 :

diagram

N
sign //

ν
��

=̌

2

ν2
��

N1
psignq 1 // 21

This diagram commutes in fact with respect to internal

equality ‘=̌’ since

ν2 ◦ sign(0) = ν2(false) = pfalseq , and

psignq 1 ◦ ν(0)

= psignq � νN(0) = psign ◦ 0q = pfalseq likewise

as well as

ν2 ◦ sign(sn) = ν2(true) = ptrueq , and

psignq � ν(sn) = psignq � psnq

= psign ◦ s(n)q = ptrueq likewise

– f = pret : 2→ N : diagram

2
pret //

ν2
��

=̌

N

ν
��

21
ppretq 1 // N1

This diagram commutes in fact with respect to internal
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equality ‘=̌’ since

ν(pret(false)) = ν(0) = p0q ,

ppretq 1(ν2(false)) = ppretq � pfalseq

= ppret(false)q = p0q ;

same for true and 1 = s 0 in place of false and 0 respectively.

– f = r : 2× 2→ 2 (relative complement):

This case follows from the above and cases below, since

2× 2
r //

pret×pret
��

=

2

N×N r // N

sign

OO

– f = Π : A→ 1 :

ν1 ◦ ΠA(a) = ν1 ◦ id1 = ν1 = p0q

=̌ pΠAq � νA(a)

– ` : A×B → A :

(νA ◦ `A,B)(a, b) = νA(a)

= p`A,Bq � 〈νA(a); νB(b)〉
=̌ p`A,Bq � (νA×B(a, b))

– r : A×B → B : symmetrical.

• Map composition g ◦ f : A → B → C : combine the two

commuting squares for f and for g into commuting rectangle for
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g ◦ f :

νC ◦ (g ◦ f)(a) = (νC ◦ g)(f(a))

=̌ pgq � νB(f(a)) recursively

=̌ pgq � 〈 pfq � νA(a)〉 recursively

=̌ 〈 pgq � pfq 〉 � νA(a)

=̌ pg ◦ fq � νA(a) q. e. d. in this case

• Induced map (f, g) : C → A×B into a product:

νA×B ◦ (f, g)(c) = 〈νA#νB〉(f(c), g(c))

= 〈νA(f(c)); νB(g(c))〉
=̌ 〈 pfq � νC(c); pgq � νC(c)〉 recursively

= 〈 pfq ; pgq 〉 � νC(c) = p(f, g)q � νC(c)

q. e. d. in this case

• Iterated f §(a, n) : A×N→ A of (already tested) endo

f : A → A : Straight forward by recursion on n, since iteration

is iterated composition, as follows:

– n = 0 :

νA ◦ f §(a, 0) = (νA ◦ idA)(a) = νA(a)

=̌ pidq � νA(a) =̌ pf §(a, 0)q � νA
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– induction step:

νA ◦ f §(a, s n) = νA ◦ f ◦ f §(a, n)

=̌ pfq � (νA ◦ f §(a, n))

by hypothesis on f

=̌ pfq � ( pf §q � (νA×N(a, n))

by induction hypothesis

=̌ ( pfq � pf §q )� (νA×N(a, n))

= ( pfq � pfq $)� (νA×N(a, n))

=̌ pfq $ � νA×N(a, sn)

=̌ pf §q � νA×N(a, sn)

– f of S-restriction form f : {A : χ} → {B : ϕ} :

The corresponding naturality diagram commutes as restric-

tion of the naturality diagram for f : A→ B,

in detail:

ν{A:χ}(a) = by def νA(a) ∈ A1 anyway

but more than that:

χ(a) =⇒ pχq � νA(a) =̌ ν2(χ(a)) by the above

= ν2(true) = ptrueq , whence in fact

ν{A:χ}(a) ∈ {A : χ}1, same way:

ν{B:ϕ}(f(a)) ∈ {B : ϕ}1
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and then – restriction –

ν{B:ϕ}(f(a))

= (νB ◦ f)(a) =̌ pfq � νA(a)

= pfq � ν{A:χ}(a) q. e. d.

8.5 Complexity controlled Iteration CCI

In sections below on evaluation of map codes on suitable arguments we

rely on those while loops which are given by Complexity Controlled

Iteration in the sense of the following schema (CCI) :

c = c(a) : A→ N[ω] complexity

f = f(a) : A→ A predecessor endo

[c(a) > 0 =⇒ c f(a) < c(a)] (descent)

∧ [c(a) = 0 =⇒ f(a) = a] (stationarity)

put together: CCI[c : f ]

(CCI)

wh[c > 0 : f ] : A ⇀ A

= while[c(a) > 0] do a := f(a) od, formally:

Dwh = {(a,m) ∈ A×N : c fm(a) = 0},

dwh(a,m) = a : Dwh → A

ŵh(a,m) = fm(a) : Dwh → A

Question is termination, dependent on a ∈ A or for a ∈ A free.
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In subsequent chapters we will obtain objectivity and termination

conditioned soundness for the formally partial CCI evaluation to

come.

Examples:

• A CCI wh[c > 0 : f ] : A ⇀ A with order values in

N ⊂ N[ω] is a primitive recursive map, namely

wh[c > 0 : f ]

= f §(a,min{m ≤ n : fm(a) = 0}) : A×N→ A

• evaluation below of p. r. map codes will be a CCI, with com-

plexity values in ordinal N[ω].

• Counterexamples: the while loop

[ a := 0; n := 1;

while a < 1/3 do

a := a+ 3 · 10−n;

n := n+ 1

result := a ]

This while loop approximating 1/3 does not come with com-

plexity control, it would loop endlessly.

The arctan(1) Leibniz series which approximates but does not

reach non-algebraic (geometric) number π/4 in finite time, is

another while loop which is not a CCI. This loop could be con-

trolled by a positive rational descending complexity, of the ar-

gument to become smaller than a prescribed

ε = 1/n0, n0 ∈ N> = {n ∈ N : n > 0}.
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8.6 Iterative descent theory

Iterative non-infinite-complexity-descent theory πR is defined as strength-

ening of boolean theory S of primitive recursion with predicate-into-

subject abstraction, by the following additional axiom schema:

c : A→ N[ω], p : A→ A

data of a complexity controlled iteration – CCI –

with complexity values in polynomial ordered semiring N[ω] :

[c(a) = 0 ⇒ p(a) = a] ∧ [c(a) > 0 ⇒ c p(a) < c(a)] : A→ 2;

ψ = ψ(a) : A→ 2 a “negative” test predicate:

ψ(a) =⇒ c pn(a) > 0, a ∈ A, n ∈ N free

(non-termination for all a)

(π)

ψ = falseA : A→ 2

Non-infinite iterative descent: “Only the overall false predicate

implies overall non-termination of CCI.”

Comment: At first look, this axiom (π) may look bizarre. In

order to approximate termination of map code evaluation to come

– in particular within a framework without formal quantification –

I came up with this “double negation” inference of implications, at

poster session of Vienna conference 2006 celebrating Gödel’s 100th

birthday.

Special case of axiom (π) above, A := N, number a : 1 → N
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substituted to a ∈ A = N, gives

CCI[c : N→ N[ω], p : N→ N]

a : 1→ N (number)

[c(a) = 0 ⇒ p(a) = a] ∧ [c(a) > 0 ⇒ c p(a) < c(a)];

ψ : 1→ 2 (truth value) s. t.

ψ =⇒ c pn(a) > 0, n ∈ N free

(π1)

ψ = false : 1→ 2

Only truth value false can imply infinite descent of N[ω] chains.

If object 1 should be a separator object for the theory, then schema

(π1) would already entail axiom (π). This is the case for set theory

extensions T of theory πR.

8.7 Equality definability revisited

Boolean p. r. theory S admits the following schema:

f, g : A→ N in S,

S ` [f(a) = g(a)] : A→ N×N→ 2

(EqDef)

S ` f = g : A→ N, algebraically:

f =S g : A→ N

Equality definability extends to S-map pairs f, g : A → B with
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common codomain a cartesian product B ∼= Nm or even B an arbi-

trary set of theory S.

Proof by commutativity max(m,n) = max(n,m) : N ×N → N,

see proof of this result for Goodstein Arithmetic GA.

8.8 Iterative map code evaluation

8.8.1 Map code evaluation as CCI

Definition first of PR2 evaluation

ε = εPR2 = ε(f , a) : PR2×X2 ⇀ PR2×X2
r−→ X2

by Complexity Controlled Iteration (CCI)

while c f > 0 do (f , x) := e(f , x) od

where c = c f : PR2 → N[ω] will be a suitable map code complex-

ity within the linearily ordered semiring N[ω] of polynomials in one

variable ω with coefficients in N.

Iteration of evaluation step

e = e(f , x) : PR2×X2 → PR2×X2

is to descend this map code complexity c eventually down to 0 ∈ N[ω],

and to give evaluation result as value in right component X2 upon

reaching complexity 0.
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Iterative evaluation of theory PR2 within S

evaluation step

e = e (f , a) = (emap(f , a), earg(f , a)) :

PR2×X2 −→ PR2×X2

earg(f , a) is the intermediate argument obtained by one evaluation

step applied to the pair (f , a), and emap(f , a) is the remaining map

code still to be evaluated on intermediate argument earg(f , a), same

then iteratively applied to pair (emap, earg). Here a ∈ Ȧ ⊂ X2 free, set

A arbitrary in PR2, numeral version Ȧ subset of universal (numerals)

set X2 =
⋃̇
A in PR2 Ȧ [=

⋃
{A:χ} in S ν{A : χ} ⊂ N].

This evaluation step e is defined by recursive case distinction,

controlled by N[ω]-valued descending complexity

c = c f ∈ N[ω],

in turn p. r. defined the time being by

c pidAq := 0, A in PR2

c pbaq := 1

ba ∈ bas r {id} = {0, true, s,Π, `, r,r, sign, pret}
c 〈g � f〉 := c f + c g + 1

c 〈f ; g〉 := c f + c g + 1

c 〈f#g〉 := c f + c g + 1

c f $ see below.

evaluation step e = e(f , a) is p. r. defined (and is iteration complexity-

controlled) as follows:
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• Basic map cases:

– case of an identity:

e ( pidAq , ȧ) := ( pidAq , ȧ)

c pidAq = 0

stationary

– remaining basic map cases:

e ( pbaq , ȧ) := ( pidq , ˙ba a),

A = Dom ba, B = Codom ba,

ba ∈ bas r {id}
= {0, s, true,r,ΠA, `A,B, rA,B : A,B PR2 objects},

c( pidq ) = 0 < c( pbaq ) = 1, ba ∈ bas r {id}

• Composition cases, ȧ ∈ Ȧ ⊂ X2 free:

– identity subcase:

e(g � pidAq , ȧ) := (g, ȧ),

c g < c g + 0 + 1 = c 〈g � pidAq 〉

– for f ∈ BA ⊂ S, g ∈ CB ⊂ S, ȧ ∈ Ȧ, c f > 0 :

e (g � f , ȧ) = (emap(g � f , ȧ), earg(g � f , ȧ))

:= (g � emap(f , ȧ), earg(f , ȧ))
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Complexity descent:

c emap(g � f , ȧ)

= c (g � emap(f , ȧ))

= c emap(f , ȧ) + c g + 1

< c f + c g + 1

= c 〈g � f〉

• Cases of an induced:

– identities case:

e(〈 pidCq ; pidCq 〉, ċ) := ( pidC×Cq , 〈ċ; ċ〉),
c pidC×Cq = c( pidq ) = 0

< 1 = c(〈 pidCq ; pidCq 〉)

– case f ∈ AC , g ∈ BC , not both equal to pidCq :

e (〈f ; g〉, ċ)
:= (〈emap(f , ċ); emap(g, ċ)〉, 〈earg(f , ċ); earg(g), ċ〉),
c emap(〈f ; g〉, ċ)
= c emap(f , ċ) + c emap(g, ċ) + 1

< c f + c g + 1 = c 〈f ; g〉,
since in this case c f > 0 and/or c g > 0,

and therefore c emap f < c f

and/or c emap g < c g

• Case f#g ∈ (A′ ×B′)A×B, 〈ȧ; ḃ〉 ∈ 〈A#B〉 :

analogous (and redundant).
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• Iteration case: For endomap code f ∈ AA and ȧ ∈ Ȧ,

e (f $, 〈ȧ; p0q 〉) := (f 0, ȧ) as well as

e (f $, 〈ȧ; ν(sn)〉) := (〈f � fn〉, ȧ),

where f 0 := pidq ,

f sn := 〈f � fn〉 recursively,

code expansion

Complexity extension:

c f $ := (c f + 1) · ω ∈ N[ω]

N[ω] the well-ordered semiring of polynomials in one indetermi-

nate over N.

In this “acute” iteration case we have

Complexity descent

c f 0 = c pidq = 0 < (c f + 1) · ω = c f $,

and further inductively

c f sn = c 〈f � 〈f . . . f〉 . . .〉
= c f · sn+ n

< (c f + 1) · (n+ 1)

< (c f + 1) · ω = c f $

Explication: In this case c takes values within the linearily

ordered semiring N[ω] ⊃ N of polynomials in one indeterminate
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ω, ω thought to represent (arbitrarily) big natural numbers. So

in fact c(f sn) < c(f $), since the former polynomial has lower

degree than the latter.

Linear order of polynomials p, q ∈ N[ω] is defined hierarchically

by first comparison of the degrees of p and q, second in case of

equal degrees by comparison of pivot coefficients, and third if

the pivot monomials are equal, recursively by comparison of the

polynomials p and q with the two pivot monomials deleted.

Evaluation extension to theory S

Evaluation εa : S×X2 → X2 is defined as (purely) formal extension

of above PR2 evaluation ε = εPR2 by

• complexity

ca = ca〈〈 pχq ;f〉; 〈 pχq 〉〉
=def =def c〈〈 ptrueAq ;f〉; ptrueAq 〉r 8

= ((((3 + 0) + 1) + c(f)) + 1) r 8 =∈ N[ω]

in particular

ca( pid{A:χ}q ) = ca〈〈 pχq ; pidAq 〉; 〈 pχq 〉〉 = 0

evaluation step

ea = ea〈〈 pχ : A→ 2q ;f〉; 〈 pχ : B → 2q 〉〉
=def 〈〈trueA; e(f〉; ptrueBq 〉)
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Then descent of complexity ca with application of step ea follows

readily from descent of PR2 complexity c with PR2 evaluation step

e.

Evaluation εa defined as CCI of ea clearly extends evaluation ε of

theory PR2.

Notation: We note evaluation complexity ca and evaluation step

ea of theory S simply as

c = c〈〈 pχq ;f〉; 〈 pχq 〉〉 : S×X2 → N[ω]

e = e(〈〈 pχq ;f〉; 〈 pχq 〉〉, ȧ) : S×X2 → S×X2

giving – just below – partial evaluation map

ε̇ = ε̇(〈〈 pχq ;f〉; 〈 pχq 〉〉, ȧ) : S×X2 ⇀ X2

8.8.2 Evaluation resolution

Evaluation definition

• Evaluation ε̇ of S map code variable f ∈ BA ⊂ S on (fitting)

arguments ȧ ∈ Ȧ ⊂ X, is (formally partial) defined, by the

complexity controlled iteration (CCI)

ε̇ = ε̇(f , ȧ) :=



init
{

(h, x) := (f , ȧ)

∗
while [c(h) > 0]

do (h, x) := e (h, x) od

∗
result := x ∈ Ḃ ⊂ X
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which in fact always terminates within quantified theories T

(with finite descent in N[ω]), and cannot iterate infinitely within

theory πR – axiom (π).

• Define (natural) evaluation family

ε = εA,B = εA,B(f , a) : BA × A ⇀ B by

εA,B(f , a) = ν̇−1
B (ε̇(f , ν̇A(a)),

ν̇ image-restricted internal numeralisation

8.8.3 Dominated characterisation of evaluation

With abbreviation

[m defs ε(f , ȧ)] for ` em(f , ȧ) = pidq :

termination in at most m steps,

Family

ε = εA,B(f , a) : BA × A ⇀ B, A,B sets in S,

is characterised within theory πR by

• ε( pbaq , a) = ba(a), a ∈ A = Dom(ba)

• [m defs ε̇(g � f , ȧ)]

=⇒ [m defs ε̇(f , ȧ)] ∧ [m defs ε̇(g, ε̇(f , ȧ))]∧

ε(g � f , a) = ε(g, ε(f , a)) :

If m defines left hand iteration ε̇, then evaluations on right hand

side terminate in (at most) m evaluation steps e too, equal result
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• [m defs ε̇(〈f ; g〉, ċ)]
=⇒ ε(〈f ; g〉, c) = 〈ε(f , c); ε(g, c)〉;

• [m defs ε̇(f#g, 〈ȧ; ḃ〉)]
=⇒ ε(〈f#g〉, (a, b)) = (ε(f , a), ε(g, b));

• ε(f $, (a, 0)) = a;

[m defs ε̇(f $, 〈ȧ, ν(sn)〉)]
=⇒ [m defs both ε below] ∧
ε(f $, (a, sn)) = ε(f , ε(f $, (a, n));

• Global evaluation ε̇ doesn’t iterate infinitely within theory πR,

and upon termination it terminates with all the properties above

of evaluation family ε = εA,B, A,B in S.

Proof by Peano induction on m ∈ N free, via case distinction on

codes h, and arguments appearing in the different cases of asserted

conjunction:

• Case (h, a), h = ba ∈ bas (basic),

Dom[ba] = A (say), Codom[ba] = B

εA,B( pbaq , a) = ν̇−1
B (ε̇( pbaq , ν̇A(a))

= ν̇−1
B (ba(ν̇A(a)) by definition of ε̇

= (ν̇−1
B ◦ ν̇B ◦ ba)(a) by naturality of ν

= ba(a) ∈ B

• Case (h, a) = (g � f , a)

– subcase f = pidAq : obvious
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– non-trivial subcase f not an identity code:

m+ 1 defs ε̇(g � f , a) =⇒
εA,C(g � f , a)

= ν̇−1
C e

§((g � emap(f , ν̇A(a)), earg(f , ν̇A(a))),m)

= ε(g, ε(emap(f , a), earg(f , a)))

by induction hypothesis on m

=⇒
m+ 1 defs ε̇(g, ε̇(emap(f , ȧ), earg(f , ȧ)))∧
ε(g, ε(emap(f , a), earg(f , a))) = ε(g, ε(f , a))

• Case (h, c) = (〈f ; g〉, c) : Analogous to the above; easier, since

here f and g have common domain.

• Product-of-maps case is redundant, covered by the above.

• Case (h, z) = (f $, (a, 0)) : obvious

• Case (h, z) = (f $, (a, sn)) :

m+ 1 defs ε̇(f $, (a, ν(sn))) =⇒
m+ 1 defs all (implicit) instances of ε̇ below, and

ε(f $, (a, sn))

= r em(e(f $, (a, sn)) by hypothesis on m

= ε(f [n+1], a) = ε(f � f [n], a)

= ε(f , ε(f [n], a)) by hypothesis on m

= ε(f , ε(f $, (a, n))) by hypothesis on m

q. e. d.
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8.8.4 Evaluation objectivity

Evaluation ε is objective, i. e. for each single, (meta free) f : A → B

in theory πR given

Formally partial

ε( pfq , a) = ε ◦̂ ( pfq , a) : 1× A pfq×A−−−−→ BA × A ε
⇀ B

is in fact p. r. represented and (then) satisfies

πR ` ε( pfq , a) = f(a) : A→ B

symbolically:

ε( pfq , ) = f (map reflection)

Proof by structural recursion on f : A→ B :

• f ∈ bas one of the basic maps of theory S :

Assertion given by definition of ε.

• composition:

ε( pg ◦ fq , a) = ε( pgq � pfq , a)

= ε( pgq , ε( pfq , a))

= ε( pgq , f(a)) by hypothesis on f

= g(f(a)) by hypothesis on g

= (g ◦ f)(a)

• case of an induced map (f, g) : C → A×B analogous.



198 Evaluation

• case of an iterated map f § : A×N→ A

ε( pf §q , (a, 0))) = ε( pfq $, (a, 0)))

= a = f §(a, 0)

and further recursively

ε( pf §q , (a, sn))) = ε( pfq $, (a, sn)))

= ε( pfq , ε( pfq $, (a, n)))

= ε( pfq , ε( pf §q , (a, n)))

= ε( pfq , f §(a, n)) by hypothesis on n

= f(f §(a, n)) by structural hypothesis on f

= f §(a, sn)

• case of a predicatively restricted map

((χ, f), ϕ) : {A : χ} → {B : ϕ}

ε(〈〈 pχq ; pfq 〉; pϕq 〉, a)

= ((ε( pχq , a), ε( pfq , a)), ε( pϕq , a))

= ((χ, f), ϕ)

all of that within descent theory πR (in fact already in S)

q. e. d.

8.9 Soundness metamathematically

Metamathematical soundness theorem

• For πR maps, i. e. S maps f, g : A → B and (any) number

k : 1→ N
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S ` pfq =̌π
k pgq

πR ` f = g

whence in particular:

• For an S, πR predicate ϕ : A → 2 and (any) number k ∈
PR(1,N)

S ` ProvπR(k, pϕq )

πR ` ϕ

Here ProvπR(k,ϕ) means: k ∈ N is index for an internal proof

of map code ϕ ∈ 2A. It is defined by

ProvπR(k,ϕ) = [ϕ =̌π
k ptrueAq ]

Proof (of first assertion) by external (metamathematical) course-

of-values Peano induction on k ∈ PR(1,N) :

• case that k points to the internalised/coded version of an equa-

tional axiom, example associativity of composition:

S ` ph ◦ (g ◦ f)q =̌k p(h ◦ g) ◦ fq

πR ` h ◦ (g ◦ f) = (h ◦ g) ◦ f

Here the postcedent holds in itself.

Analogously for the other equational cases.
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• case that k points to the conclusion pfq =̌k phq of an inter-

nalised transitivity,

pfq =̌k phq
⇑

pfq =̌i pgq ∧ pgq =̌j phq

Then, because of induction hypothesis on i, j < k :

S ` f = g and S ` g = h

whence S ` f = h

q. e. d. in this transitivity case.

• case that k points to the conclusion of an internalised composition-

with-equality,

pg ◦ fq =̌k pg̃ ◦ f̃q
⇑

pfq =̌i pf̃q ∧ pgq =̌j ph̃q

Then, because of induction hypothesis on i, j < k :

S ` f = f̃ and S ` g = g̃

whence

S ` g ◦ f = g̃ ◦ f̃
q. e. d. in this compatibility case.

• case of compatibility of forming the induced with equality: anal-

ogous.
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• case of Freyd’s uniqueness of the initialised iterated:

phq =̌k pg§ ◦ (f × idN)q
⇑

ph ◦ (idA, 0) ◦ ΠAq =̌i pfq

∧ ph ◦ (idA × s)q =̌j pg ◦ hq

By hypothesis on i and j

S ` h ◦ (idA, 0) = f and S ` h ◦ (A× s) = g ◦ h

Freyd’s uniqueness on the objective level finally gives

S ` h = g§ ◦ (f × idN)

q. e. d. in this case, the last case for S := PR2 and hence the

last to be considered for its definitional, conservative extension

S = PR2 + (abstr).

• case of iterative descent, for πR : Let

pψq =̌π
k pfalseAq

πR ` ⇑

p[[c = 0] =⇒ [p = idA]]

∧ [c > 0 =⇒ c ◦ p < c]q

=̌π
i ptrueAq ]

∧ [ψ =⇒ [c ◦ p§ > 0] =̌π
j ptrueA×Nq ]
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By hypothesis on i, j < k the premissae infer

πR ` [c(a) = 0 =⇒ p(a) = a]

∧ [c(a) > 0 =⇒ c ◦ p(a) < c(a)] : A→ 2 (descent)

as well as

πR ` ψ(a) =⇒ c ◦ p§(a, n) > 0 : A×N→ 2 (test)

But (objective) axiom (π) of non-infinite descent

– which constitutes theory πR over S –

infers from the above

πR ` ψ = falseA : A→ 2 q. e. d.

The postcedents above exhaust all theorems of theory πR. This

proves the theorem.

We approach soundness on objective mathematical level as fol-

lows.

8.10 Termination conditioned soundness

For p. r. theory S and its internal notion of equality

=̌ = =̌k : N→ S× S,

dtreek the k th internal equation deduction tree of S, we have:

(i) Termination-conditioned “inner” evaluation soundness:
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With S sets A,B, with k ∈ N free, and map codes

f , g ∈ BA ⊂ S ⊂ N free, argument a ∈ A free

S ` [m defs εdt(dtreek/a)] =⇒
[f =̌k g =⇒ ε(f , a) = ε(g, a)] (•)

If an internal p. r. deduction-tree for internal equality of f and g

is available, and if on this tree – top down argumented with a in

A – tree evaluation terminates, will say: iteration of evaluation

step edt becomes stationary after a finite number m of steps,

then equality of evaluation of f and g on this argument is the

consequence.

By substitution of concrete codes, codes pfq , pgq of PR maps

f, g : A→ B into free f , g ∈ BA, we get from the above

(ii) Termination-conditioned “concrete” evaluation soundness,

reflection:

For S maps f, g : A→ B :

S ` [ pfq =̌k pgq ∧m defs εdt(dtreek/a)]

=⇒ f(a) = ε( pfq , a) = ε( pgq , a) = g(a)

k ∈ N, m ∈ N, a ∈ A free

=⇒ f = g : A→ B

Internal equality ‘=̌’ is reflected into objective equality ‘=’.

(εdt termination conditioned).
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(iii) Specialisation in (i) to f = ϕ ∈ 2A an internal predicate, and

substitution of ptrueAq ∈ 2A give

Termination-conditioned logical internal soundness:

S `ProvS(k,ϕ) ∧m defs εdt(dtreek/a) =⇒ ε(ϕ, a)

If tree-evaluation of an internal S deduction tree for an internal

p. r. predicate ϕ ∈ 2A – the tree argumented with a ∈ A – termi-

nates after a finite number m of evaluation steps, then ε(ϕ, a)

is the consequence, within S as well as within its strengthening

πR (and in set theory).

(iv) Specialisation of (iii) to case pϕq ∈ 2A a concrete p. r. predicate

code we get

Termination-conditioned logical objective soundness, reflection:

S `ProvS(k, pϕq ) ∧m defs εdt(dtreek/a) =⇒ ϕ(a)

If tree-evaluation of an internal S deduction tree for a free vari-

able p. r. predicate ϕ : A→ 2 – the tree argumented with a ∈ A
– terminates after a finite number m of evaluation steps, then

ϕ(a) is the consequence, within S as well as within its strength-

ening πR (and in set theory).

Remark to proof below: in present case of frame theory S (and of

stronger theory πR) we have to control all evaluation step iterations,

and we do that by control of iterative evaluation εdt of whole argu-

mented deduction trees, whose recursive definitions will be – merged –

part of this proof.
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Proof of – basic – termination-conditioned soundness (i) i. e. of

implication (•) in the theorem, is by induction on deduction tree enu-

merating index k ∈ N of sequence [dtreek]k∈N, starting with (flat)

dtree0 = 〈 pid1q =̌0 pid1q 〉. Count is first by depth of trees, and sec-

ond by lexicographical order. m ∈ N is to dominate argumented-

deduction-tree evaluation εdt to be recursively defined below: condi-

tion m defs εdt(dtreek/a) with respect to complexity cdt, and step edt .

We argue by recursive case distinction on the form of the top up-

to-two layers of argumented deduction tree dtreek/x at hand.

We first treat the case of theory PR2 and its internal deduction

trees.

Flat super case depth(dtreek) = 0, i. e. super case of uncondi-

tioned, axiomatic (internal) equation f =̌k g :

The first involved of these cases is associativity of (internal) com-

position, with abbreviation � for p◦q :

dtreek = 〈〈h� g〉 � f〉 =̌k 〈h� 〈g � f〉〉
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In this case – no need of a recursion on k –

PR2 `
m defs εdt(dtreek/a) =⇒
[m defs ε(〈h� g〉 � f , a)]

∧ [m defs ε(〈h� g〉, ε(f , a))

∧ [m defs ε(h, ε(g, ε(f , a)))

∧ [m defs ε(h, ε(〈g � f〉, a))

∧ [m defs ε(〈h� 〈g � f〉〉, a)]

∧
ε(〈h� g〉 � f , a) = ε(〈h� g〉, ε(f , a))

= ε(h, ε(g, ε(f , a)))

= ε(h, ε(〈g � f〉, a)) = ε(h� 〈g � f〉, a)

This proves assertion (•) in present associativity-of-composition case.

Analogous proof for the other flat, equational cases, namely re-

flexivity of equality, left and right neutrality of id family, the boolean

equations for object 2, Godement’s equations for the induced map as

well as retractive pairing and distributivity of composition over form-

ing the induced map:

Godement’s equations ` ◦ (f, g) = f, r ◦ (f, g) = g, with ‘;’ abbre-

viating ‘ p, q ’:

m defs ε etc. =⇒
ε( p`q � 〈f ; g〉, c) = ε( p`q , ε(〈f ; g〉, c))
= ε( p`q , (ε(f , c), ε(g, c))) = ε(f , c),

analogously for composition with right projection



Termination conditioned soundness 207

Analogous proof for cases of retractive pairing and distributivity

of composition over forming the induced map. Here are the proofs of

(•) for the last equational cases, with $ abbreviating p§q :

Anchor case statement for the internal iterated f $ :

dtreek = 〈f $ � 〈 pidAq ; p0q � pΠAq 〉 =̌k pidAq 〉

is straight forward, as follows:

ε(〈f $ � 〈 pidq ; p0q � pΠq 〉〉, a)

= ε(f $, ε(〈 pidq ; p0q � pΠq 〉), a))

= ε(f $, (a, 0)) = a = ε( pidq , a)

Iteration step, case of genuine iteration equation

dtreek = 〈f $ � 〈 pidq# psq 〉 =̌k f � f $〉 :

PR2 ` m defs εdt(dtreek/(a, n)) =⇒
m defs all instances of ε below, and:

ε(f $ � 〈 pidq# psq 〉, (a, n)) (1)

= ε(f $, ε(〈 pidq# psq 〉, (a, n)))

= ε(f $, (a, sn))

= ε(f [sn], a) (by definition of ε step e)

= ε(f � f [n], a)

= ε(f , ε(f $, (a, n))

= ε(f � f $, (a, n)) (2)

Proof of termination-conditioned soundness for the remaining deep,

genuine Horn cases: for dtreek, Horn type (at least) at deduction of

root:
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Transitivity-of-equality case: with map code variables f , g,h

we start with argument-free (implicational) deduction tree

f =̌k h

dtreek = ⇑

f =̌i g

⇑

dtreeii dtreeji

g =̌j h

⇑

dtreeij dtreejj

It is argumented with argument a ∈ A (free) say, recursively spread

down:

f/a =̌k h/a

dtreek/a =

f/a =̌i g/a

dtreeii/xii dtreeji/xji

g/a =̌j h/a

dtreeij/xij dtreejj/xjj

Spreading down arguments from upper level down to 2nd level

must/is given explicitly, further arguments spread down is then recur-

sive by the type of deduction (sub)trees dtreei, dtreej, i, j < k.
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By induction hypothesis on i, j we have for tree evaluation εdt :

f =̌k h ∧ m defs εdt(dtreek/a)

=⇒ m defs εdt(dtreei/a), εdt(dtreej/a) ∧
εdt(dtreei/a) = 〈 pidq /ε(f , a) =̌i pidq /ε(g, a)〉
∧ εdt(dtreej/a) = 〈 pidq /ε(g, a) =̌j pidq /ε(h, a)〉
=⇒ ε(f , a) = ε(g, a) ∧ ε(g, a) = ε(h, a)

by induction hypothesis on i, j < k

=⇒ ε(f , a) = ε(h, a)

and this is what we wanted to show in present transitivity of equality

case.

[Transitivity axiom for equality is a main reason for necessity to

consider (argumented) deduction trees: intermediate map code equal-

ities ‘=̌’ in a transitivity chain must be each evaluated, and pertaining

deduction trees may be of arbitrary high evaluation complexity]

Case of symmetry axiom scheme for equality is obvious.

Compatibility Case of composition with equality

〈g � f〉/a =̌k 〈g � f̃〉/a
dtreek/a =

f/a =̌j f̃/a

dtreeij/a dtreejj/a
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By induction hypothesis on j < k

m defs εdt(dtreek/a) =⇒
m defs εdt(dtreej/a) ∧ ε(f , a) = ε(f̃ , a) =⇒
ε(g � f , a) = ε(g, ε(f , a)) = ε(g, ε(f̃ , a))

= ε(g � f̃ , a)

by dominated characterisic equations for ε and Leibniz’ substitutivity

into equality q. e. d. in this first compatibility case.

Spread down arguments is more involved in

Case of composition with equality in second composition factor:

argument spread down merged with tree evaluation εdt and proof of

result:

〈g � f〉/a =̌k 〈g̃ � f〉/a
dtreek/a =

g =̌i g̃

dtreeii dtreeji

[Here dtreei is not (yet) provided with argument, it is argumented

during top down tree evaluation]

m defs εdt(dtreek/a) =⇒
[m defs all instances of ε below] ∧
ε(g � f , a) = ε(g, ε(f , a)) = ε(g̃, ε(f , a)) (∗)
= ε(g̃ � f , a)
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(∗) holds by Leibniz’ substitutivity and

m defs εdt(dtreek/a) =⇒
m defs εdt(dtreei/ε(f , a))

∧ m defs ε(g, ε(f , a)) = ε(g̃, ε(f , a))

by induction hypothesis on i < k.

This proves assertion (•) in this 2nd compatibility case.

Compatibility case of internal formation of the induced map

with internal equality

f =̌i f̃ , g =̌j g̃ =⇒ 〈f ; g〉 =̌k 〈g̃; f̃〉 :

m defs ε(〈f ; g〉, c) ∧ m defs ε(〈f̃ ; g̃〉, c)
=⇒ m defs ε(f , c), ε(g, c), ε(f̃ , c), ε(g̃, c) ∧
ε(〈f ; g〉, c) = (ε(f , c), ε(g, c)) = (ε(f̃ , c), ε(g̃, c))

by hypothesis f =̌i f̃ , g =̌j g̃

= ε(〈f̃ ; g̃〉, c)

Same for compatibility of internal cartesian map product with equality

(redundant).

Case of Freyd’s (internal) uniqueness of the initialised iterated, is

case

h/(a, n) =̌k 〈g$ � 〈f# pidq 〉/(a, n)〉
dtreek/(a, n) =

ti tj
where

root (ti) = 〈h� 〈 pidq ; p0q � pΠq 〉/a =̌i f/a〉,
root (tj) = 〈h� 〈 pidq# prq 〉/(a, n) =̌j 〈g � h〉/(a, n)〉
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Comment: h is an internal comparison candidate fullfilling the

same internal p. r. equations as (internal) initialised iterated

〈g$ � 〈f# pidq 〉〉.
It should be – is: soundness – evaluated equal to the latter, on

A×N.

Soundness proof in this case

h� 〈 pidq , 0〉 =̌i f ∧ h� 〈 pidq#s〉 =̌j g � h
=⇒ h =̌k g

$ � 〈 pidq#f〉

is the following one, by (structural) recursion on k :

m defs εdt(dtreek/a) =⇒
[m defs all instances of ε below] ∧
ε(h, (a, 0)) = ε(f , a)

= ε(g$ � 〈f# pidq 〉, (a, 0)) (hypothesis on i < k)

(# = p×q the internal cartesian map code product)

as well as – induction on n –

ε(h, (a, sn))

= ε(h, ε(〈 pidAq# psq 〉, (a, n)))

= ε(h� 〈 pidq# psq 〉, (a, n))

= ε(g � h, (a, n)) (hypothesis on j < k)

= ε(g, ε(h, (a, n)))

= ε(g, ε(g$ � 〈f# pidq 〉, (a, n))) (∗)
= ε(g � 〈g$ � 〈f# pidq 〉〉, (a, n))

= ε(g$ � 〈f# pidq 〉, (a, sn))
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(∗) by induction hypothesis on n and since evaluation ε preserves pred-

icative equality ‘=’ (Leibniz)

Termination-condtioned-soundness extension to theory S = PR2+

(abstr)

Case of internally equal restrictions

f =̌k g ∈ S({A : χ}, {B : ϕ})

of internal PR2 maps f , g ∈ PR2(A,B) :

〈〈 pχq ;f〉; pϕq 〉 =̌a
k 〈〈 pχq ; g〉; pϕq 〉

dtreek =

〈 pχq p⇒ q 〈f p=Bq g〉〉 =̌PR2
i ptrueAq

Here

m defs εdt(dtreek/a) =⇒
[m defs all instances of ε below] ∧ :

ε(〈 pχq p⇒ q 〈f p=Bq g〉〉, a) = true

⇐⇒ [χ(a) ⇒ [ε(f , a) =B ε(g, a)]

⇐⇒ ε( ptrueAq , a) = true

=⇒
ε(〈〈 pχq ;f〉; pϕq 〉, a)

= ((χ(a), ε(f , a)), ϕ(a)) = ε(〈〈 pχq ; g〉; pϕq 〉, a)

q. e. d. in this restriction case.
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Cases of internal composition, induced maps into products, as well

as iteration of internal S maps are obtained directly by formal map

restriction in the corresponding PR2 cases.

q. e. d. Termination conditioned p. r. soundness Theorem.

Comment: Already for stating the evaluations, we needed the –

categorical, free-variables theories PR, PR2, S of primitive recursion,

as well as – for “termination”, even in classial frame T – p. r. complex-

ities within N[ω]. Since this type of soundness is a corner stone in our

approach, the above complicated categorical combinatorics seem to be

appropriate for the constructive framework of iterative descent theory

πR below, although “terminology used is not in the mainstream of

category theory and logic.”
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Chapter 9

Predicates decidability

This chapter is logically central: In forgoing chapter on evaluation we

have strengthened (boolean) p. r. theory S of primitive recursion with

predicate-into-subset abstraction into iterations.

Theory πR turns out to be sound over S, by termination-conditioned

soundness of theory S.

Within πR we define for each PR2 predicate an alleged decision

algorithm to decide on counterexamples vs. overall validity. Discussion

of that decision algorithm leads to decidablity of all p. r. predicates,

within/by theory πR.

Consistency provability of “any” theory can be stated as a p. r.

predicate, decidable within πR (and extensions like in particular set

theory).
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9.1 Relative soundness

From termination-conditioned soundness of theory S we get

Internal/arithmetised S consistency

framed by descent theory πR :

For iterative descent theory πR = S + (π), axiom (π) stating

non-infinite iterative descent in ordinal N[ω] we have

πR ` ConS i. e. “necessarily” in free-variables form:

πR ` ¬ProvS(k, pfalseq ) : N→ 2, k ∈ N free :

Theory πR derives that no k ∈ N is the internal S-Proof index for

pfalseq .

Recall: For p. r. theory S predicate ProvS is defined as

ProvS(k,ϕ) = [ϕ =̌S
k ptrueAq ] : N× 2A → 2

Proof by termination-conditioned soundness of S :

By objective logic assertion (iv) of that theorem, with

ϕ = ϕ(a) : = false(a) = false : 1→ 2, we get:

Evaluation-effective internal inconsistency of S

– i. e. availability of an evaluation-terminating internal deduction

tree of pfalseq –

implies false :

S, πR ` ProvS(k, pfalseq ) ∧ cdt e
m
dt(dtreek/false) = 0

=⇒ false
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Contraposition to this, still with k,m ∈ N free:

πR ` true =⇒
¬ProvS(k, pfalseq ) ∨ cdt e

m
dt(dtreek/false) > 0

i. e. by free-variables (boolean) tautology:

πR ` ProvS(k, pfalseq ) =⇒ cdt e
m
dt(dtreek/false) > 0

For k “fixed”, the conclusion of this implication – m free – means infi-

nite descent in N[ω] of iterative argumented deduction-tree evaluation

εdt on dtreek/false, which is excluded intuitively.

Formally it is excluded within our theory πR taken as frame:

We apply non-infinite-descent scheme (π) to εdt which is given by

step edt and complexity cdt – the latter descends (this is argumented-

tree evaluation descent) with each application of edt as long as com-

plexity 0 ∈ N[ω] is not (“yet”) reached. We combine this with – choice

of – overall “negative” condition

ψ = ψ(k) : = ProvS(k, pfalseq ) : N→ 2, k ∈ N free

and get – by that scheme (π) – overall negation of this (overall) ex-

cluded predicate ψ, namely

πR ` ¬ProvS(k, pfalseq ) : N→ 2, k ∈ N free, i. e.

πR ` ConS q. e. d.

So “slightly” strengthened theory πR = S + (π) derives the free-

variables consistency formula for theory S of primitive recursion with

2-valued truth object and predicate abstraction.
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[Scheme (π) holds in set theory, since there N[ω] is an ordinal.]

As is well known, consistency provability and soundness of a theory

are strongly tied together. We get in fact even

Theorem on S-to-πR relative soundness:

• for an S predicate ϕ = ϕ(a) : A→ 2 we have

πR ` ProvS(k, pϕq ) =⇒ ϕ(a) : N× A→ 2

• in particular we get for S-maps f, g : A→ B

πR ` pfq =̌k pgq =⇒ [f(a) = g(a)]

Proof of first assertion is a slight generalisation of proof of in-

ternal consistency of S framed by πR as follows – take predicate ϕ

instead of false, and use termination-conditioned soundness, assertion

(iv) on termination-conditioned objective logical soundness directly:

S, πR `
ProvS(k, pϕq ) ∧ cdt e

m
dt(dtreek/a) = 0

=⇒ ϕ(a) : (N×N)× A→ 2

k,m ∈ N, a ∈ A all free

Boolean free-variables calculus tautology

[α ∧ β ⇒ γ] ⇐⇒ [¬[α ⇒ γ] ⇒ ¬β]

(test with β = false as well as with β = true)

gives from this, still with k,m, a free:

πR `¬[ProvS(k, pϕq ) =⇒ ϕ(a)]

=⇒ cdt e
m
dt(dtreek/false) > 0.
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As before, apply non-infinite descent scheme (π) to εdt in combi-

nation with – choice of – overall “negative” condition

ψ(k, a) : = ¬[ProvS(k, pϕq ) =⇒ ϕ(a)] : N× A→ 2

and get – scheme (π) – overall negation of this (overall) excluded pred-

icate ψ(k, a), namely

πR ` ProvS(k, pϕq ) =⇒ ϕ(a) : N× (1× A)→ 2,

proof index k ∈ N and argument a ∈ A free

q. e. d. for first assertion.

For proof of the second assertion, take in the above

ϕ = ϕ(a) : = [f(a) = g(a)] : A→ B ×B → 2

and get

πR ` pfq =̌k pgq

=⇒ ProvS(j(k), p[f = g]q )

[j : N→ N suitable p. r.]

=⇒ [f(a) = g(a)] : N× A→ 2 q. e. d.

9.2 An alleged partial decision algorithm

As the kernel of decision of an S predicate χ : A→ 2 by iterative de-

scent theory πR we introduce an (a priori partial) µ-recursive decision

algorithm ∇χ for χ : counterexample vs. proof. Without restriction of

generality χ = χ(n) : N→ 2 .

As a partial p. r. map ∇ϕ : 1⇀ 2 is given by three S data:
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• its index domain for defined arguments

D∇ϕ of form D∇ϕ = {k : δϕ(k)}
D∇ϕ =def {k : ¬ϕ(k) ∨ ProvS(k, pϕq )} ⊆ N

“k counterexample or S-proof ”

• its defined arguments enumeration

d∇ϕ =def Π : D∇ϕ = {N : δϕ}
⊆−→ N

Π−→ 1

(not a priori a retraction or empty,)

• and its rule ∇̂ = ∇̂ϕ : D∇ϕ → 2 defined by

∇̂ϕ = ∇̂ϕ(k) =def

false if ¬ϕ(k)

true if ProvS(k, pϕq )

: D∇ϕ = {N : δϕ} → 2

∇̂ϕ : D∇ϕ → 2 is in fact a well defined rule, since by the above

S-to-πR objective soundness we have

πR ` ProvS(k, pχq ) =⇒ ϕ(n) : N×N→ 2,

k, n ∈ N free

whence case disjointness of the alternative within D∇ϕ .
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Remark: This taken together means intuitively within πR :

∇ϕ =



false if ¬ϕ(µδϕ)

counterexample found

true if ProvS(µδϕ, pϕq )

S proof found

undefined otherwise

: 1⇀ 2

From the above we get the following complete (metamathematical)

πR case distinction for p. r. predicates

• first case, termination: D∇ϕ = {N : δϕ} has at least one (total)

p. r. point, namely

µδϕ : 1→ D∇ϕ = {N : δϕ}
= by def {k ∈ N : ¬ϕ(k) ∨ ProvS(k, pϕq )},with

πR ` δϕ ◦ µ δϕ : 1→ 2

This µδϕ is formally partial, we state the present termination

case as follows:

µδϕ : 1⇀ D∇ϕ ⊆ N with δϕ ◦̂µ δϕ =̂ true i. e. with

δϕ ◦̂µ δϕ
Π

⊆ true and true
jϕ

⊆ δϕ ◦̂µ δϕ
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diagram:

Dµδ

Π

��

µ̂δ

  

δ ◦ µ̂δ

''
1

j

GG

µδ /

true

44N
δ // 2

Dµδ = Dµδϕ ⊆ N,
and j = jϕ : 1→ Dµδ = Dµδϕ

suitable, to be found by (external, in present case terminating)

count of maps and equations, suitable for

δϕ ◦̂ µδϕ = δϕ ◦ µ̂δϕ ◦ jϕ = true : 1→ 2

and hence, by Totality Lemma:

k0 := µδϕ : 1→ D∇ϕ = {N : δϕ} ⊆ N total p. r. and

πR ` δϕ(k0) = δϕ ◦ µ δϕ = true : 1→ D∇ϕ → 2

Subcases of this termination case are:

– negative (total) subcase:

πR ` ¬ϕk0 (1.1)

k0 : 1→ N (minimal) counterexample

[Then πR ` ∇ϕ = false : 1→ 2]
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– positive (total) subcase:

πR ` ProvS(k0, pϕq ) (1.2)

k0 : 1→ N (first) S proof

[Then πR ` ∇ϕ = true : 1→ 2]

These two subcases are in fact disjoint, disjoint by PR2-

to-πR soundness.

By substitution of k0 = µδχ for k ∈ N free, we get in present

subcase:

πR ` ProvS(k0, pϕq ) =⇒ ϕ(n) : N→ 2

whence

πR ` ϕ(n) ∧ ProvS(k0, pϕq ) : N→ 2 (1.2+)

• 2nd case: ∇ϕ does not terminate, πR-derivably:

πR ` D∇ϕ = {N : δϕ} = ∅N i. e.

πR ` δϕ = δϕ(k) = false

in particular

πR ` (k)¬ϕ(k) = false : N→ 2

whence

πR ` (n)ϕ(n) : N→ 2

in this second case as well as

πR ` (k)¬ProvS(k, pϕq ) : N→ 2
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Hence this 2nd case reads:

πR ` (n)ϕ(n) ∧ (k)¬ProvS(k, pϕq ) : N×N→ 2 (2)

“ϕ is πR-derivable but not S-provable”: case of πR/S incom-

pleteness, case of non-conservation of extension πR of S at ϕ.

Remains 3rd case:

D∇ϕ = {N : δϕ} may be not empty, but has no concrete numbers:

for all S points k : 1 → N : k 6∈ Dχ . This can/must be expressed

(“metamathematically”) by

πR ` δϕ(k) 6= true i. e.

πR ` ¬[δϕ(k) = true] : 1→ 2 i. e.

πR ` δϕ(k) = false : 1→ N→ 2

for k ∈ PR(1,N) arbitrary (number)

[2nd case just above is stronger than, contained in, latter 3rd case.]

Inequality Remark: For f, g : A → B p. r. maps, inequality

f 6= g between maps is not directly expressed as a formula of theories

S and πR.

Related is predicative inequality

[f 6= g] = ¬[f = g]

= ¬[f = g](a) : A
(f,g)−−→ B ×B =−→ 2

¬−→ 2

meaning (∀a ∈ A)[f(a) 6= g(a)] (!), and “just” for A = 1

(∃a ∈ A)[f(a) 6= g(a)] i. e.

f 6= g is just for p. r. points the classical inequality of maps.
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Decidability by iterative descent theory

Each S predicate ϕ = ϕ(n) : N → 2 gives rise to the following

complete case distinction within, by iterative descent theory πR :

πR ` ¬ϕ(µδϕ) : 1→ N→ 2

defined counterexample

or else

πR ` ϕ ◦ n : 1→ N→ 2,

n : 1→ N arbitrary (number) in S(1,N)

concrete theorems

Proof:

First alternative is just subcase (1.1) in the complete disjunction

above.

For the remaining alternative merge entailment (1.2+) of subcase

(1.2) with case (3) numberwise:

πR ` [ϕ(n) ∧ ProvS(k0, pϕq )] ∨ [ϕ(n) ∧ ¬ProvS(k0, pϕq )]

k0 = µδϕ ∈ PR(1,N), n ∈ PR(1,N) arbitrary

and get from this in joint case (1.2)∨̇(3), alternative

πR ` ϕ(n), n ∈ PR(1,N) arbitrary q. e. d.

Comment: The key argument for this decidability is PR2-to-πR

soundness.
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Decidability extension

The decidability theorem above generalises to decidability of arbitrary

S predicates as follows:

Each S predicate ϕ = ϕ(a) : A → 2 gives rise to the following

complete case distinction within, by iterative descent theory πR :

πR ` ¬ϕ(µδϕ ◦ ctA) : 1→ N→ 2

defined counterexample

or else

πR ` ϕ ◦ a : 1→ A→ 2 theorems,

a : 1→ A an arbitrary point in S(1, A),

ctA : N→ A the (retractive) Cantor count

of S object A

Proof of Decidability Corollary: substitute in the decidability the-

orem predicate ϕ = ϕ(n) : N→ 2 by ϕ ◦ ctA : N→ A→ 2 q. e. d.

9.3 General consistency decidability

For constructive set theory S and quantified arithmetical theories T

(with only finite descent in N[ω]) as well as iterative descent theory

πR, we discuss the pertaining free-variable consistency formula/predicate

γ = γ(k) = ¬ProvS(k, pfalseq ) : N→ 2

and get by p. r. predicate decidability within iterative descent theory

πR
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Consistency decidability for arithmetical theory S by iterative

descent theory πR :

For cartesian p. r. constructive set theory S and for p. r. consistency

predicate

ConS = ConS(k) = ¬ProvS(k, pfalseq ) : N→ 2

we have – first alternative –

πR ` ¬ConS i. e. πR ` ProvS(µγ, pfalseq )

a concrete contradiction

or else – second alternative:

πR ` ConS(k), k arbitrary in S(1,N)

i. e.

πR ` ¬ProvS(k, pfalseq ), k arbitrary (number)

no (concrete) contradiction:

(concrete) consistency q. e. d.

9.4 Self-Consistency

(i) If consistent, then theory πR does not derive its own inconsis-

tency formula:

πR 6` ¬ConπR

(ii) Iterative descent theory πR is self-consistent:

πR ` ConπR
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Indirect proof of assertion (i): Suppose we would have inconsis-

tency derivation alternative in consistency decision above:

πR ` ¬ConπR i. e.

πR ` ¬γ ◦̂µDγ =̂ true,

γ = γ(k) := ¬ProvπR(k, pfalseq ) : N→ 2

By Totality Lemma

µDγ : 1→ Dγ ⊆ N (“total”) p. r. and

πR ` ¬γ ◦ µDγ

By choice of γ this is to say

πR ` ProvπR(µDγ, pfalseq ),

µDγ : 1→ N in S, a number k0 : 1→ N,

πR ` ProvπR(k0, pfalseq )

whence, by metamathematical soundness theorem:

πR ` false

contradiction to assumed consistency of theory πR.

This proves assertion (i).

Main assertion (ii) then follows by consistency decidability for

theory πR.

[ An inconsistent theory derives everything, in particular its own

consistency and inconsistency formulae.]

q. e. d.
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Soundness

Soundness of p. r. set theory S, soundness of S within itself, would

mean – logically – that availability ProvS(k, pϕq ) of an S internal

proof (index) k for the code pϕq of a predicate ϕ = ϕ(a) : A → 2

implies (within S) overall validity ϕ = trueA : A→ 2.

Soundness of iterative descent theory πR is a consequence of injec-

tivity of all (internal) numeralisations

νA : A→ A1/=̌π

We derive that general injectivity from (particular) injectivity of

ν2 : 2→ 21/=̌π

by naturality of transformation ν = [νA]A .

The latter injectivity is shown in section below on iterative sound-

ness to follow from (already established) self-consistency of theory

πR.

231
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10.1 Iterative soundness

We get for iterative descent theory πR

• Soundness: for πR maps f, g : A→ B

πR ` [ pfq =̌π
k pgq ] =⇒ f(a) =B g(a)

• This entails in particular logical soundness of πR :

For any p. r. predicate ϕ = ϕ(a) : A→ 2

πR ` ProvπR(k, pϕq ) =⇒ ϕ(a)

k ∈ N free, meaning exists k, and a ∈ A free, meaning for all a.

• Conclusion: (Derivable) Truth = Provability for construc-

tive “set” theory πR taken as Arithmetics as well as Founda-

tions.

Proof:

• Numeralisation

ν2 : 2 = {false, true}

= {α ∈ 2 : α = false ∨ α = true} → 21

is injective, since for α, β ∈ 2 free

πR ` pαq =̌π pβq =⇒ :

[α 6= β

=⇒ [α = false ∧ β = true] ∨ [α = true ∧ β = false]

=⇒ pfalseq =̌π ptrueq ∨ ptrueq =̌π pfalseq

⇐⇒ ProvπR(k0, pfalseq )

=⇒ false by self-consistency of system πR.]
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whence

πR ` pαq =̌π pβq =⇒ α = β : 2× 2→ 2,

injectivity of ν2 : 2→ 21.

• ν = ν(n) : N→ N1 is injective:

ν(m) =̌π ν(n)

=⇒ p=q � νN×N(m,n) =

p=q � 〈ν(m); ν(n)〉 =̌π ptrueq

the latter by internal substitutivity

into predicative equality =

⇐⇒ ν[m = n] =̌π ptrueq = ν true ∈ 21

by ν-naturality

=⇒ [m = n] = true ⇐⇒ m = n

by injectivity of ν2

• By ν-naturality, the injectivity above carries over to all numer-

alisations

νC : C → C1, C an S set

namely

– from νA, νB to νA×B = νA×B(a, b) = 〈νA(a); νB(b)〉 by

νA×B(a, b) =̌π νA×B(ã, b̃)

⇐⇒ νA(a) =̌π νA(ã) ∧ νB(b) =̌π νB(b̃)

=⇒ a = ã ∧ b = b̃ ⇐⇒ (a, b) = (ã, b̃)
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– finally from νA to ν{A:χ} by restriction.

• Soundness proof: Use compatibility of internal composition

with internal equality, naturality of transformation ν = [νA]A
and injectivity of νB as follows:

πR ` pfq =̌π pgq [∈ BA]

=⇒ pfq � νA(a) =̌π pgq � νA(a)

=⇒ νB(f(a)) =̌π νB(g(a))

=⇒ f(a) = g(a), a ∈ A free

• Conclusion means just the conjunction of proof internalisa-

tion

ϕ =πR
k trueA

πR ` ProvπR(k, pϕq )

k ∈ PR(1,N) “meta-free”

and (logical) soundness

πR `ProvπR(k, pϕq ) =⇒ ϕ(a) = trueA(a)

k ∈ N, a ∈ A both free, meaning

“exists k s. t. for all a ”

q. e. d.
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10.2 Completeness

By self-consistency theory πR admits the following ω-completeness

schema of test by all (internal) numerals:

ϕ = ϕ(a) : A→ 2 predicate

k = k(a) : A→ N p. r. “suitable” such that

πR ` ProvπR(k(a), pϕq � νA(a))

(ω-Comp)

πR ` ϕ

[The converse is given by proof-internalisation.]

Proof: By ν naturality – within πR – the antecedent gives

πR ` ProvπR(k′(a), ν2 ◦ ϕ(a)),

k′ : A→ N suitable p. r. i. e. such that

πR ` ν2 ◦ ϕ =̌π
k′(a) ptrueq = ν2 ◦ trueA

whence by πR self-consistency, namely by injectivity of ν2 within πR :

πR ` ϕ = trueA q. e. d.

Interpretation: The νA(a), a ∈ A are jointly epic, νA lies dense

in [1, A]πR . object 1 is a separator, all of this with respect to πR

maps (on object language level): use (ω-Comp) and equality definabil-

ity for separation of maps f, g : A→ B.
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Problems

(1) Is axiom scheme (π) redundant, πR ∼= S? Certainly not, since

isotonic maps from lexicographically ordered N ×N, . . . ,N[ω] to

N are not available. Evaluation is Ackermann recursive, not prim-

itive recursive.

(2) Is theory πR consistent relative to theories PR, PRa, PR2, S?

Presumably yes, “since” it is self-consistent. Is it even a conser-

vative extension of PR? Presumably no, see (1) above.

(3) Can we get inner soundness for theory πR? I. e. is evaluation

ε : BA × A→ B compatible with πR’s internal equality,

BA 3 f =̌π g =⇒ ε(f , a) = ε(g, a)?

For the time being we have only objective (evaluation) soundness:

For f, g : A→ B in πR

pfq =̌π pgq

=⇒ ε( pfq , a) = f(a) = g(a) = ε( pgq , a)

This is the one considered by mathematical logicians.

Inner soundness (of evaluation) is a challenging open problem with

present approach.

(4) Can we assume consistently that object 1 is a generator for

category πR, i. e. that any given (metamathematical) p. r. map

F : πR(1,N) → πR(1,N) comes with an πR map f : N → N
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such that f represents F within πR? Will say:

F = πR(1, f) : πR(1,N)→ πR(1,N)

(1
n−→ N) 7→ F (n) = (1

n−→ N
f−→ N)

This would solve a question asked to Erich Kähler in 1964:

Aber Sie benutzen doch schon natürliche Zahlen zur Beschreibung

der Mengenlehre, mit der Sie die natürlichen Zahlen begründen

wollen?

Kähler’s answer: diese Frage wird später beantwortet werden.
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Ackermann recursion as CCI

Following Péter 1967 and Eilenberg/Elgot 1970 we discuss an

Ackermann type function named Ψ originally given by a double recur-

sion. For to separate the two recursion variables we start with a (p. r.)

candidate Φ = Φ(m) : N→ [N,N] for constructive conjugation of Ψ .

Ackermann function Ψ then is obtained by complexity controlled it-

erative evaluation of Φ . Function Ψ turns out this way to be given

within theory πR by an – intuitively terminating – complexity con-

trolled while loop which is not primitive recursive.

An Ackermann double recursion

Define an auxiliary unary map-code valued primitive recursive func-

tion Φ = Φ(m) : N→ dNNe nat−−→ [N,N] as follows:

• anchor:

Φ(0) = pidq : 1→ [N,N] and

Φ(1) = psq : 1→ [N,N]

239
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• recursion:

Φ(m+ 1) = Φ(m)$ � 〈 p1q ; psq 〉
= Φ(m)$ � 〈 ps (0 ΠN)q ; psq 〉 : (1)

N→ [N×N,N]× [N,N×N]
�−→ [N,N]

Applicate evaluation ε to unary function

Φ = Φ(m) : N→ [N,N] and get binary function

Ψ = Ψ(m,n) : N×N→ N in πR as

Ψ(m,n) =def ε(Φ(m), n) (2)

and hence – double recursion –

• Ψ(0, n) = ε(Φ(0), n) = ε( pidq , n) = n

• Ψ(1, n) = ε(Φ(1), n) = ε( psq , n) = sn = n+ 1

[ Ψ(2, n) = ε(Φ(2), n) = ε(Φ(1)$ � 〈 p1q ; psq 〉, n)

= ε( psq $, ε(〈 p1q ; psq 〉, n)) = ε( psq $, (1, sn))

= s§(1, sn) = 1 + (n+ 1) = 2 + n ]

• Ψ(m+ 1, 0) = ε(Φ(m+ 1), 0)

= ε(Φ(m)$ � 〈 p1q ; psq 〉, 0)

= ε(Φ(m)$, (1, s 0))

= ε(Φ(m), ε(Φ(m)$, (1, 0)))

= ε(Φ(m), 1) = Ψ(m, 1) (3)
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• Ψ(m+ 1, n+ 1) = ε(Φ(m+ 1), n+ 1)

= by def ev(Φ(m)$ � 〈 p1q ; psq 〉, n+ 1)

= ε(Φ(m)$, ε(〈 p1q ; psq 〉, n+ 1))

= ε(Φ(m)$, (1, n+ 2)) = ε(Φ(m)[n+2], 1) (4)

= ε(Φ(m), ε(Φ(m)[n+1], 1))

= ε(Φ(m), ε(Φ(m)$, (1, n+ 1)))

= ε(Φ(m), ε(Φ(m)$ � 〈 p1q ; psq 〉, n))

= by def ev(Φ(m), ε(Φ(m+ 1), n))

= Ψ(m,Ψ(m+ 1, n)) (5)

Note: The Ackermann type double recursive “function” ψ(m,n) =

Ψ(m + 1, n) is just Péter’s 1967 number theoretic function ψ which

is not primitive recursive, identic to function Ψ = Ψ(x, y) in Eilen-

berg/Elgot 1970 Appendix A, which is shown in a different way

to be recursive but not primitive recursive. The latter authors define

family Ψm by Ψ0(n) = n+1 and Ψm+1(n) iteratively by Ψ §
m (1, n+1).

Introduction of map-code valued p. r. map Φ above formalises this def-

inition within the framework of (recursive) theory πR of non-infinite

iterative (complexity) descent.

Iterative resolution

Double recursive “function” Ψ : N × N is represented as a – “quasi

terminating” recursive – map in iterative descent theory πR. Ψ has
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form

Ψ = Ψ(m,n) = by def ev(Φ(m), n) = ε ◦̂ (Φ(m), n) :

N×N Φ×idN−−−−→ [N,N]×N ε
⇀ N.

In fact Φ is primitive recursive and evaluation ε is defined as a com-

plexity controlled iteration, within theory πR.

Double recursive property (characterisation?) of Ψ

Ψ(0, n) = ε(Φ(0), n) = ε( pidq , n) = n

Ψ(1, n) = ε(Φ(1), n) = ε( psq , n) = n+ 1

Ψ(m+ 1, 0) = Ψ(m, 1) by (3) above

Ψ(m+ 1, n+ 1) = Ψ(m,Ψ(m+ 1, n)) by (5) above

q. e. d.

Majorant

Ψ ∆(n) = Ψ(n, n) : N → N × N → N majorises any p. r. function

f = f(n) : N→ N, intuitively since it starts from successor s : N→ N

and encounters all iteration nesting depths n and all arguments n ∈ N,
hence it cannot be primitive recursive, since any primitive recursive

map has limited iteration nesting depth.

Péter 1967 as well as Eilenberg/Elgot 1970 show this result

for function ψ = ψ(m,n) = Ψ(m + 1, n) : N ×N → N directly from

its double recursive definition.

As an injective map (with non-empty domain N) Ψ ∆ : N→ N is

a coretraction in sets, but it does not admit a retraction in theory Ŝ
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nor in ΩR̂ : If so, it would be primitive recursive, by last assertion of

Totality Lemma in chapter on Partiality.

But let us discuss here an a priori possible (counter)example

of an ΩR̂ retraction g : N ⇀ N to the (diagonalised) Ackermann

function f = Ψ ◦̂∆ : N⇀ N.

As a while loop g must have the form

g = wh[χ : h] : N⇀ N with

χ = χ(a) : N→ 2, h : N→ N,

both primitive recursive, this by section on Partial partial maps –

giving reduction of an arbitrarily nested while loop to a while loop

with while nesting depth 1, and (hence) with control predicate and

endomap to be iterated both p. r.: One while loop is sufficient.

For g = wh[χ : h] : N⇀ N a retraction to

f = Ψ ◦̂∆ = ε ◦̂ (Φ×N) ◦∆ : N→ N×N→ N×N⇀ N,

(see above), it is nearby to choose

χ = χ(b) = min{b′ : b′ ≥ f(b)} = µ{b′ : b′ ≥ ev ◦̂ (Φ×N) ◦∆(b)}
h = h(b) = b+ 1 : N→ N

But this control predicate χ would not be primitive recursive, since

evaluation ε is not p. r.

So this partial map g, a natural candidate, is not a retraction

to Ackermann’s f = Ψ ◦̂∆ : N ⇀ N, at least not within Ŝ nor in

πR̂. In fact there can be (consistently) no counterexample against the
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Totality Lemma, we have proved it in the framework of theory S

and also for stronger theory πR.

A logical possibility for construction of a recursive but not prim-

itive recursive sequence is to p. r. enumerate all p. r. map codes:

enum = enum(n) : N→ NN

and to evaluate at enumeration index n:

E = E(n) = ε(enum(n), n)

: N
(enum,id)−−−−−→ NN ×N ε−→ N

If this (formally partial recursive) function would be primitive recur-

sive, it would make up a code self-evaluation of theory S and hence it

would formalise the liar-paradoxon into an antinomy, see Appendix

B below.

Sequence Ψ(n, n) : N
∆−→ N × N Ψ−→ N above is an “equipotent”

subsequence of E = E(n) : N→ N .
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Witnessed termination?

Theory extension τR of πR, of witnessed finite complexity controlled

iterative descent is defined over theory S = PR + 2 + (abstr) by the

following additional axiom schema:
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c : A→ N[ω], p : A→ A]

data of a complexity controlled iteration – CCI –

with complexity values in polynomial semiring N[ω] :

[c(a) = 0 ⇒ p(a) = a] ∧ [c(a) > 0 ⇒ c p(a) < c(a)]

(τ)

For τ = τ [c : p] = τ [c : p](a)

=def µ{n : c pn(a) = 0} : A ⇀ N

is to hold

A
τ [c:p] /

ΠA

<<N
ΠN //

=̂

1 (•)

As a commutative S diagram (•) reads

Dτ

dτ
��

τ̂

&&

Π

""
AOO

id
��

τ / N
Π // 1

A

k

GG

Π

55

dτ : Dτ accounts for ΠN ◦̂ τ ⊆̂ΠA, and k : A → Dτ accounts for

ΠA ⊆̂ΠN ◦̂ τ : A ⇀ 1, all of this within theory τR̂ of partials over p. r.

theory τR – a theory strengthening S – and makes domain enumera-

tion dτ : Dτ → A into an S retraction. Therefore, by first assertion of

Totality Lemma for τR̂, τ = 〈dτ , τ̂〉 must be an embedded (total)
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p. r. map τ : A→ N.

Comment: Operator ‘τ ’ is here a particular instance of Bour-

baki’s existence witnessing operator (“témoin”), of Hilbert’s iota:

pτ(a)(a) = p§(a, τ [c : p](a)) = 0 : A→ N[ω]

It witnesses termination of CCI concerned: Complexity controlled

iteration.

With O = N[ω] (or O an arbitrary polynomial ordinal) we have

axiom schema

c : A→ O, p : A→ A] a CCIO :

[c(a) = 0 ⇒ p(a) = a] ∧ [c(a) > 0 ⇒ c f(a) < c(a) ∈ O]

(τO)

τ = τ [c : p] = τO[c : p](a) : A→ N s. t.

pτ(a)(a) = p§(a, τO[c : p](a)) = 0 : A→ O

Self-evaluation Question: Does τOR admit code self-evaluation

(and is therefore inconsistent)? Yes:

Boil down partially defined, complexity controlled evaluation

ε = εA,B(f , a) : BA × A ⇀ B within Ŝ

to total p. r. evaluation

ε = εA,B(f , a) : BA × A→ B within τOR.

Define a “Cretian” map, truth value liar : 1 → 2 – called ‘liar ’

because it equals its own negation – as follows:
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Let ct : N→ 2N be the – primitive recursive – count of all predicate

codes onN; it comes with a primitive recursive (!) inverse isomorphism

ct−1 : 2N → N :

Enumerative cyclic construction of PR2 map term codes gives

strictly greater codes (in lexicographic order), by each later application

of a given map term constructing axiom: basics, composed, induced,

iterated.

With negated self-evaluation

δ =def ¬ ◦ ev ◦ (ct, idN) : N
(ct,id)−−−→ 2N ×N ε−→ 2

¬−→ 2

(evaluation ε : 2N ×N→ 2 is here total p. r.)

Consider p. r. map (truth value) liar : 1→ 2,

liar =def δ ◦ ct−1 ◦ pδq

= by def ¬ ◦ ev ◦ (ct, idN) ◦ ct−1 ◦ pδq

= ¬ ◦ ev ◦ (ct ct−1 pδq , ct−1 ◦ pδq )

= ¬ ◦ ev( pδq , ct−1 ◦ pδq )

= ¬ ◦ δ(ct−1 ◦ pδq ) (objectivity of ε)

= by def ¬ liar : 1→ 2→ 2

q. e. d. contradiction within theory τOR, in particular within τN[ω]R.

Corollary

As extensions of inconsistent theories τN[ω]R with witnessed termina-

tion of complexity controlled iteration CCI = CCIN[ω] the following

theories are all inconsistent:
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• set theories as in particular PM, ZF, and NGB and their first-

order parts, all of these first taken with axiom of choice AC;

and then also without AC, since Gödel has shown consistency

of AC relative to these set theories.

• Peano Arithmetic PA + AC with (countable) axiom of choice.

Question: Is (countable) AC relative consistent over classical,

quantified Peano Arithmetic PA? If so, then this PA itself would

be inconsistent.
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History Highlights

I 360◦ Babylonian # of days of | year

highly super-perfect:

1 + 2 + 3 + 4 + 5 + 6 = 21 + 8 + 9 + 10 = 48 + 60 = 108 + 72 =

180 + 80 = 260 + 90 = 350 + 120 = 470 + 180 = 650 >>

360◦ = |−180◦|+ 180◦ = 180◦east+ 360◦/2 west greenwhich

= 360 000 nautic miles =??yards =??feet

II perfect 28 = 1 + 2 + 4 + 7 + 14 days of | month ∗ 13 =

364 + 1 + 1/4− 1/100 + 1/400 = | gregorian year

+.0ξ minutes = | astronomic year

ξ weakly increasing

III EGY PT 32 + 42 = 52

IIII=IV ΠYΘAΓOPAS A ∗ A+B ∗B = Γ ∗ Γ

a2 + b2 = c2

52 + 122 = 132 etc. ?
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ratios Q = N /N
musicoftheSphairas

GREEK constructions with compass and RULEr

V ΠΛATΩ/ΣΩKPATHS/ΘAIΘETOS
√

2 irrational

VI EYKΛI∆HS GREEK GeoMETRIK and Number

VII Diophant/GREEK polynomials, diophantine equations

↗ Hilbert10th problem

VIII O Hesse/India/Siddharta/Buddha OM
go west transformed into arabic zero 0

goes typewriter zero 0 =()

VIIII=IX Cardano/Tartaglia radicals 4
√
a/ 3
√
a

X DECARTES cartesian coordinates :

number pairs resp. triples

for description of points and curves in Q×Q
and (Q×Q)×Q

X+? GÖDel
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chapter 1 Cartesian language

1 terminal object one

N Natural Numbers Object NNO

CA cartesian category theory

× cartesian product of sets and of maps

0 zero constant 0 : 1→ N

s successor function s : N→ N

id identity map

◦ map composition

Π terminal map

`/r left/right projection

var (free) variable

Ax axiom

253
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chapter 2 Primitive recursion

PRa = PR + (abstr) p. r. theory with predicate abstraction

into subsets

f § iteration of endo map f

(FR!) Freyd’s uniqueness of the initialised iterated

(pr) full schema of primitive recursion

pr[g, h] p. r. map defined out of anchoring g

and step map h

T classical, quantified arithmetical theory,

in particular set theory

PM, ZF, NGB Principia Mathematica, Zermelo/Fraenkel and

v. Neumann/Gödel/Bernays set theories

εA,B axiomatic, higher order evaluation

∼= isomorphy

resp.. natural equivalence of functors
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chapter 3 Algebra and order

pre predecessor map

ar b truncated subtraction

U1 to U4 Goodstein uniqueness rules

sgn (arithmetical) sign

V4 derived Goodstein uniqueness rule

(a
.
= b), [a = b] individual equality, equality predicate

∆ diagonal map

a↑n superexponentiation

chapter 4 Predicate abstraction

` (a theory) derives

pre predecessor map

{A : χ} subset abstracted from predicate χ

PRa = PR + (abstr) p. r. theory PR + abstraction subsets

2 = {0, 1} ⊂ N 2-element subset of NNO N

f =S g equality between S maps of theory S

1+N sum/coproduct of objects

A/ρ quotient set by an equivalence predicate
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chapter 5 Arithmetical logic

αr β relative complement: α but not β

2 = {false, true} boolean algebra (in logical terms)

pret : 2→ N interpretation of truth values as numbers

sign : N→ 2 logical signum of natural numbers

PR2 = PR + 2 theory PR enriched by boolean algebrea 2

S = PR2 + (abstr) theory PR2 enriched

by predicate abstraction into subsets

S constructive p. r. “set” theory

f = if[χ, (h|g)](a) : A→ B definition of a map by case distinction

P1 to P5 Peano axioms, here theorems, in particular

P5 Peano induction
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chapter 7 Partiality

f : A ⇀ B partial map

f ′ ⊆̂ f graph inclusion

f =̂ f ′ equality of partial maps

g ◦̂ f partial map composition

p. b. pull back

Ŝ, Ŝ theory of p. r. partials over S

Ψ Ackermann function

(µ) schema of µ-recursion

wh [χ : f ] while loop

PA classical Peano Arithmetic

PRA classical free-variables p. r. Arithmetic
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chapter 8 Evaluation

ω indeterminate for (arbitrarily) big natural numbers

N[ω] polynomials over N in one indeterminate ω

(π) descent axiom schema

πR theory of non-infinite iterative descent

pfq code of map f

� = p◦q internal composition on map code sets

# = p×q internal map code cartesian product

$ = p§q internal iteration operator

BA map code set

num (objective) numeralisation

ν internal numeralisation

X universal set

(EqDef) Equality definability schema

ε map code evaluation

c map code complexity

e evaluation step to be iterated

m defs m defines

=̌ internal, arithmetised equality

ProvS internal S proof

εdt deduction tree evaluation
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chapter 9 Predicates decidability

πR = S + (π) iterative non-infinite-descent theory

∇ predicate decision operator

ConT consistency formula/predicate for a theory T

D∇χ domain set for partial decision

of predicate χ

δχ predicate defining subset D∇χ = {N : δχ}

chapter 10 Soundness

hom(A, ) = ( )A constructive internal hom functor
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Appendix B

τ [c : p] termination index for iteration of step p

controlled by complexity c

τR = τN[ω]R theory of witnessed finite iterative descent

πR theory of non-infinite iterative descent

PM Principia Mathematica

ZF Zermelo/Fraenkel set theory

AC axiom of choice

NGB von Neumann-Gödel-Bernays set theory

PA (classical) Peano Arithmetic

AC axiom of choice
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[81] C. Smorynski 1977: The Incompleteness Theorems. Part D.1 in

Barwise ed. 1977.

[82] W. W. Tait 1996: Frege versus Cantor and Dedekind: on the

concept of number. Frege, Russell, Wittgenstein: Essays in Early

Analytic Philosophy (in honor of Leonhard Linsky) (ed. W. W.

Tait). Lasalle: Open Court Press (1996): 213-248. Reprinted in

Frege: Importance and Legacy (ed. M. Schirn). Berlin: Walter de

Gruyter (1996): 70-113.

[83] A. Tarski, S. Givant 1987: A formalization of set theory with-

out variables. AMS Coll. Publ. vol. 41.

[84] M. Tierney 1972: Sheaf theory and the continuum hypothesis.

Toposes, algebraic geometry and logic. LN in Math. 274, 13-42.

[85] A. Yashuhara 1971: Recursive function theory and logic. Aca-

demic Press.



Index

number, 84

p. r. abstraction, 84

abstraction objects, 83

anchor, 40

Andrasek, 56

antecedent, 49

antitonic, 79

argument-free, 72

arithmetised, 218

associativity, 21

bifunctoriality, 28, 29

binary nested, 32

binomial coefficients, 80

BOOLEAN, 103

boolean algebra, 104, 106

bound variable, 83

Budach & Hoehncke, 23

Cantor, 89

cartesian functor, 87

cartesian map product, 27

cartesian product, 18, 23

cartesian structure, 22

categoric, 48

CCI, 163, 164, 183, 193

Church’s Thesis, 150

code expansion, 191

codes, 171

codomain, 32

commutativity of max, 66

comosition symbol, 33

compatibility of inducing, 25

compatibility of iteration, 39

complement, 103, 110

complexity, 187

complexity controlled iteration, 193

composition, 18

concatenation, 18

conclusion, 34

consistency, 218

constructive set theory, 107

coproduct, 51, 52, 97
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countability, 89

counting, 21

course of values induction, 114

decidability, 227

decidability remark, 84

decidable subset, 83

decision algorithm, 221

decomposition diagram, 29

diagonal induction, 115

diagram commutativity, 23

distributive law, 31, 55

distributivity, 25, 30

domain, 32

Eilenberg/Elgot, 18, 121, 158, 239,

241, 242

elimination, 31

elimination of variables, 33

endomap, 33, 36

equalisers, 88

equality predicate, 55, 71, 79

equality convention, 73

equality definability, 55, 72, 141,

186

equivalence, 48

equivalence predicate, 89

evaluation, 51

evaluation family, 194

evaluation step, 187, 188

existence, 48

exponenetiation, 79

exponentiation, 51, 118

extensions, 88

factors, 18

faculty, 47, 80

finitistic, 42

first order, 51

free variable, 21, 25, 32, 33

free-variable Arithmetics, 55

Freyd, 38, 40, 41, 49, 51, 56, 121

full schema of p. r., 47, 80, 97

full schema of p. r., 39

Gödel, 51

general p. r., 40

Gentzen bar, 18

Godement, 25

Goodstein, 42, 55, 60, 121

Goodstein Arithmetic, 98

graph, 125

half-terminal monoidal, 23

higher order, 121

identity, 18

inclusion, 85, 86
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incompleteness, 226

inconsistent, 51

index domain, 124

individually, 72

induced map, 24

inequality, 226

inference, 19
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