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1 Preliminary topics

1.1 Gaussian random variables

Let N 2 N; and N be the standard normal distribution on RN : N has the den-

sity (2�)�N=2 exp
h
� jxj2 =2

i
with respect to Lebesgue measure, where jxj denotes the

1



Euclidean norm. It is evident that N is invariant under rotations, i.e. of � : RN ! RN
is an orthogonal map, then N�

�1 = N : If f : RN ! R is Lipshitz continuous then it
is integrable with respect to N : We write N (f) for its expectation.

Theorem 1.1
Let f be Lipshitz continuous with

kfkLip := sup
x 6=y

jf (x)� f (y)j
jx� yj :

Then for any t > 0

N
��
x 2 RN : jf (x)� N (f)j > t

	�
� 2 exp

h
�2t2=�2 kfk2Lip

i
:

(The constant in the exponent on the right hand side is too small: one can get an

estimate with 2 exp
h
�t2=2 kfk2Lip

i
; but the proof is a bit more involved, and we will be

fully satis�ed with the above estimate).

Proof. It should be known that a Lipshitz continuous function is di¤erentiable
almost everywhere, with gradient rf satisfying

jrf (x)j � kfkLip :

In the proof of the theorem, we may assume that N (f) = 0; as we can subtract this
constant from f without in�uencing k�kLip : By Chebyshev, we get for any t; � > 0

N (f > t) � e��t
Z
e�fdN :

By Jensen�s inequality, we haveZ
e��fdN � e��

R
fdN = 1;

and therefore, we haveZ
e�fdN �

Z Z
e�(f(x)�f(y))N (dx) N (dy) :

For x; y 2 RN , we interpolate between x and y by setting

x (�) := x sin � + y cos �:

Then

f (x)� f (y) = f (x (�=2))� f (x (0))

=

Z �=2

0

d

d�
f (x (�)) d� =

Z �=2

0



rf (x (�)) ; x0 (�)

�
d�:

2



Using Jensen again, we getZ Z
e�(f(x)�f(y))N (dx) N (dy)

=

Z Z
exp

"
��

2

2

�

Z �=2

0



rf (x (�)) ; x0 (�)

�
d�

#
N (dx) N (dy)

� 2

�

Z �=2

0

Z Z
exp

�
��
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rf (x (�)) ; x0 (�)

��
N (dx) N (dy) d�:

For any �xed �; (x (�) ; x0 (�)) is just an orthogonal transformation of (x; y) in R2N ; and
N 
 N is the standard Gaussian measure on R2N : Therefore, by rotational invariance
of the Gauss measure,Z Z

exp

�
��
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rf (x (�)) ; x0 (�)

��
N (dx) N (dy)

is independent of �; and thereforeZ Z
e�(f(x)�f(y))N (dx) N (dy) �

Z Z
exp

�
��

2
hrf (x) ; yi

�
N (dx) N (dy)

=

Z
exp

�
�2�2

8
jrf (x)j2

�
N (dx)

� exp

�
�2�2

8
kfk2Lip

�
:

Therefore, we have for any � > 0

N (f > t) � exp
�
��t+ �2�2

8
kfk2Lip

�
:

Optimizing over � means taking � = 4t=�2 kfk2Lip which gives

N (f > t) � exp
h
�2t2=�2 kfk2Lip

i
:

We get the same estimate for �f; and therefore

N (jf j > t) � 2 exp
h
�2t2=�2 kfk2Lip

i
:

The second result we need from Gaussian variables is Wick�s identity

Theorem 1.2
Let (X1; : : : ; Xd) be a centered Gaussian random vector with covariance matrix � =�
ij
�
; and let � : Rd ! R be a continuously di¤erentiable function satisfying

j� (x1; : : : ; xd)j � C exp [C jxj]
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for some C > 0: Then

E (Xi� (X1; : : : ; Xd)) =
X
j

ijE
@�

@xj
(X1; : : : ; Xd) :

Proof. We �rst treat the case where the Xi are i.i.d. standard Gaussians. Then the
statement is simply

E (Xi� (X1; : : : ; Xd)) = E
@�

@xj
(X1; : : : ; Xd) ;

and it su¢ ces to consider the case d = 1: For that special case, it is just partial integration

E (X� (X)) =

Z 1

�1

1p
2�
e�x

2=2x� (x) dx

= � 1p
2�
e�x

2=2� (x)

����1
x=�1

+

Z 1

�1

1p
2�
e�x

2=2�0 (x) dx;

and the �rst term vanishes by the growth condition on �:
For the general case, we represent the X�s through a linear transformation of i.i.d.

Gaussians �i :

Xi =
dX
j=1

aij�j ;

where the matrix A = (aij) satis�es AAT = �: Then

E (Xi� (X1; : : : ; Xd)) =
X
j

aijE�j� (A�) ;

� as a column vector, and

E�j� (A�) =
X
l

aljE
@�

@xl
(A�)

=
X
l

aljE
@�

@xl
(X) :

This proves the claim.

1.2 Point processes

The point processes we consider are all either on R or R+; but we can give the basic
de�nitions for arbitrary locally compact separable metric spaces X: The Borel-�-�eld
is denoted by X . A measure � on (X;X ) is called Radon measure if � (K) < 1 for
any compact K � X: We write RX for the set of Radon measures on (X;X ) : We can
equip RX with the topology of vague convergence which is generated by the evaluation
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mappings � 7�!
R
fd�; f 2 C0 (X) ; where C0 (X) denotes the set of continuous functions

X ! R of compact support.
It is known that on RX there exists a metric � which is complete, and such that RX

has a countable dense subset, which is a metric for vague convergence. One says that
(RX ; �) is a Polish space. The Borel-�eld RX for this metric space is also the �-�eld on
RX generated by the mappings � 7�! � (A) ; A 2 X : These facts are easily checked.

We consider probability measure on (RX ;RX) : There is then the notion of weak con-
vergence: A sequence fQngn2N of probability measures on (RX ;RX) is said to converge
weakly to a probability measure Q if

lim
n!1

Z
F (�)Qn (d�) =

Z
F (�)Q (d�)

for any bounded continuous function F : RX ! R:
A convenient tool for the investigation of weak convergence is the Laplace functional.

Let � 2 C+0 (X) : These are the non-negative functions in C0 (X) : If Q 2 RX ; the Laplace
functional LQ on C0 (X) is de�ned by

LQ (�) :=

Z
exp

�
�
Z
� d�

�
Q (d�) :

One has the following characterization properties which we state without proof.

Proposition 1.3
a) If LQ (�) = LQ0 (�) for all �; then Q = Q0:

b) If fQng is a sequence of probability measures on (RX ;RX) ; and Q is a probability
measure, then fQng converges weakly to Q if and only if

lim
n!1

LQn (�) = LQ (�)

holds for all � 2 C+0 (X) :

If A � X is measurable and has compact closure, then RX 3 � ! � (A) is measur-
able. If Q is a probability measure on (RX ;RX) ; we write

Q (A) :=

Z
� (A)Q (d�) : (1.1)

In principle, this may be in�nite even if A has compact closure, but we will only be
interested in cases where Q is a Radon measure. We call Q the intensity measure of Q:
Let F : X ! [0;1) be a measurable mapping. Then RX 3 � !

R
Fd� 2 [0;1] is a

measurable mapping.

Lemma 1.4 Z �Z
Fd�

�
Q (d�) =

Z
FdQ:

In particular, if
R
FdQ <1; then

R
Fd� <1; Q-a.s.
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Proof. Left as an exercise to the reader.
Of interest for us are only point measures on X; i.e. measures of the formX

i2I
�xi ;

where fxig is a �nite or countable sequence inX which has the property that
P

i 1K (xi) <
1 for any compact subset K � X: The set of measures of this form is denoted by Rp;X :
It is easy to see that this is a closed subset of RX , and therefore a Borel set.

De�nition 1.5
A random variable � de�ned on some probability space (
;F ; P ) which takes values in
(RX ;RX) and satis�es P (� 2 Rp;X) = 1 is called a point process.

It is not di¢ cult to see that one can realize such a point process through a �nite or
in�nite sequence f�kg or X-valued random variables: � =

P
k ��k : The ordering of the

random variables is irrelevant for the point process. If X = R and the point process
has points with a largest element, which are all distinct, then one can choose a �xed
ordering of the points by ordering them downwards �1 > �2 > : : : . This is sometimes
convenient, although it is not really relevant.

De�nition 1.6
Let � be a Radon measure on (X;X ) : Then a point process � is called a Poisson point
process with intensity measure � if the following two conditions are satis�ed

� If A � X has compact closure then � (A) is Poisson distributed with parameter
� (A) :

� If A1; : : : ; An are pairwise disjoint sets, then � (A1) ; : : : ;� (An) are independent
random variables.

We say that � is a PPP (�) if it is a Poisson point process with intensity measure �:
If course, we have then � = Q where Q is the law of �:

For a point process, we write L� for the Laplace functional of its distribution:

L� (�) =

Z
exp

�
�
Z
� d�

�
P��1 (d�) = E exp

�
�
Z
� d�

�
:

Proposition 1.7
If � is a PPP (�) then for all � 2 C+0 (X)

L� (�) = exp

�
�
Z �

1� e��(x)
�
� (dx)

�
:

Proof. Let � 2 C+0 (X) : Given " > 0; we can �nd �nitely many A1; : : : ; An 2 X
with compact closure, and nonnegative numbers a1; : : : ; an such that��X

i
ai1Ai


1
� ":
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Replacing � by the simple function s =
P

i ai1Ai , we get

E exp

�
�
Z
sd�

�
= E exp

h
�
X

i
ai� (Ai)

i
=

Yn

i=1
E exp [�ai� (Ai)] ;

as the � (Ai) are independent. As they are Poisson with parameter � (Ai) we get

E exp [�ai� (Ai)] = e��(Ai)
1X
k=0

� (Ai)
k

k!
e�kai

= exp
�
�� (Ai)

�
e�ai � 1

��
;

i.e.

E exp

�
�
Z
sd�

�
= exp

h
�
X

i
� (Ai)

�
e�ai � 1

�i
= exp

�
�
Z �

1� e�s(x)
�
� (dx)

�
:

The result now follows by a simple approximation procedure.
To construct a PPP (�) we simply have to construct a probability measure Q on

(RX ;RX) with

LQ (�) = exp

�
�
Z �

1� e��(x)
�
� (dx)

�
for all � 2 C+0 (X) :

Theorem 1.8
For any Radon measure � on (X;X ) ; a PPP (�) exists.

Proof. We prove this �rst in the case that � (X) < 1: Then �̂ := �=� (X) is a
probability measure on (X;X ) : We choose a sequence �1; �2; : : : of independent random
variables which are distributed according the �̂: Furthermore, independently of these, we
choose an independent Poisson distributed random variable N with parameter � (X) :
Then we de�ne

� :=
NX
i=1

��i :

We claim that this is a PPP (�) : It is evident that it is a point process, so we compute
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its Laplace functional

L� (�) = E exp

�
�
Z
� d�

�
= E exp

�
�
XN

i=1
� (�i)

�
=

1X
k=1

� (X)k

k!
e��(X)E exp

�
�
Xk

i=1
� (�i)

�

=

1X
k=1

� (X)k

k!
e��(X) fE exp [�� (�)]gk

=
1X
k=1

� (X)k

k!
e��(X)

�Z
exp [�� (x)] � (dx)

� (X)

�k
=

1X
k=1

1

k!
e��(X)

�Z
exp [�� (x)]� (dx)

�k
= exp

�
�
Z �

1� e��(x)
�
� (dx)

�
:

In the case � (X) =1; we chop X into countably many pairwise disjoint, measurable
and relatively compact setsX1; X2; : : : : Then � (Xi) <1; and we can de�ne independent
PPP (�i)�s �1;�2; : : :, where �i (A) := � (A \Xi) : Then

P
i �i does the job. I leave that

to the reader to check.
We are interested only in the case where X is R or Rd or an open subset of these

spaces, and where � has a density with respect to Lebesgue measure. If g is such a
density, we say that a PPP (�) is a Poisson point process with density g; and sometimes
write PPP (t! g (t)) :

If X;X 0 are two separable, locally compact metric spaces, and f : X ! X 0 is a
continuous mapping, then f de�nes a mapping from measures � on X to measures �f�1

on X 0: However, if � is Radon, then not necessarily, �f�1 is Radon. We therefore assume
that f has the property that f�1 (K) is compact in X whenever K � X 0 is compact.
Then �! �f�1 maps Rp;X into Rp;X0 :

Lemma 1.9
Under this condition, if � is a PPP (�) ; then �f�1 is a PPP

�
�f�1

�
:
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Proof. We compute the Laplace functional. Let � 2 C+0 (X 0) : Then

L�f�1 (�) =

Z
exp

�
�
Z
� d�

�
P��1f�1 (d�)

=

Z
exp

�
�
Z
� d

�
�f�1

��
P��1 (d�)

=

Z
exp

�
�
Z
(� � f) d�

�
P��1 (d�)

= exp

�
�
Z �

1� e���f(x)
�
� (dx)

�
= exp

�
�
Z �

1� e��(x)
�
�f�1 (dx)

�
:

1.3 The basic jargon of statistical mechanics

We investigate certain probability measures on �nite but large sets �. Typically, one is
interested in properties of these measures when the number of elements in this set goes
to 1: We therefore let � depend on a parameter N 2 N; and we write �N : A typical
choices for �N is f�1; 1gN : The elements � 2 �N are called spin con�gurations, and
in case �N is a product �N = SN ; S a �nite set, e.g. f�1; 1g ; the components of � are
called the individual spins, or just the spins.

The measures P we consider have positive mass on every element � 2 �N : We
therefore can write

exp [�H (�)] ; (1.2)

where H : �N ! R: The minus sign is only for historical reasons (from physics). It
will be very convenient (for reasons which will become clear later), not to assume thatP

� exp [�H (�)] = 1; and to do the normalization separately. We therefore just assume
that H is a real valued function �N ! R; and then we de�ne a probability measure G
on �N by

G (�) = 1

Z
exp [�H (�)] ; (1.3)

where
Z :=

X
�

exp [�H (�)] :

G is evidently a probability measure on �N ; for every choice of H: At this stage, there
is of course no real di¤erence between (1.2) and (1.3), as we can always replace H by
H + logZ; and then we have a representation of the type (1.2).

The real use of keeping Z separate is that H often depends on certain extra pa-
rameters, for instance the �temperature� or the �inverse temperature�. The latter is
just a positive parameter which is always denoted by �: Typically, this parameter is a
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multiplicative one, and so we replace H by �H: Then of course also Z depends on �;
and we write Z� instead. Furthermore, G also depends on �; and we have

G� (�) :=
1

Z�
exp [��H (�)] :

Now, we should also remember, that there is the parameter N which governs the size
of the system, and we therefore write H as depending on N; i.e. HN : Then everything
is N -dependent, and we have

G�;N (�) :=
1

Z�;N
exp [��HN (�)] :

This is called the Gibbs measure with Hamiltonian HN and inverse temperature
� on �N : Z�;N is called the partition function. The expression �function� is a bit
strange as it is just a constant, but this constant depends on �; and maybe on other
parameters. This dependence is the reason one calls it �function�. The �nite N free
energy is de�ned by

F�;N =
1

N
logZ�;N :

Often, there is a limit of this quantity, as N !1 :

f (�) : = lim
N!1

F�;N

= lim
N!1

1

N
log

X
�2�N

exp [��HN (�)] :

The existence of this limit has of course to be proved, and is not true in generality.
The importance of f is based on the fact that the physically important quantities

can be expressed through it. For instance, if one takes the derivative in �; provided it
exists, and it is interchangeable with the N !1 limit, one gets

df (�)

d�
= � lim

N!1

1

Z�;N

X
�

HN (�)

N
exp [��HN (�)] ;

which is the Gibbs average of the energy per site in the N !1 limit.
The simplest such model is when the spins are all independent, i.e. when

H (�) =

NX
i=1

h (�i) ; h : S ! R:

Then, of course,
FN = log

X
�2S

e��h(�) = f (�) :
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1.4 The Curie-Weiss model

The next, slightly more interesting, case is the Curie-Weiss model, which is the
simplest model exhibiting what in physics jargon is called a phase transition. It has
�N := f�1; 1gN ; and

HN (�) := �
1

2N

NX
i;j=1

�i�j = �
1

2N

 
NX
i=1

�i

!2
; � = (�1; : : : ; �N )

The diagonal term
P

i=j is just 1; and this cancels out with the normalization and does
not in�uence the Gibbs measure. We could therefore as well just take the sum

P
i6=j

which is often done. The key point is that this Hamiltonian re�ects an interaction of
any individual spin �i with the average of the other spins �j:j 6=i�j= (N � 1) : The total
�interaction energy�is then

1

2

X
i

�i
�j:j 6=i�j
N � 1 =

1

2

1

N � 1
X
i6=j

�i�j :

That there is N � 1 instead of N is of no importance for large N:
Occasionally, one also has a so-called external �eld which give the �i a global tilt.

Then the Hamiltonian is

HN (�) := �
1

2N

NX
i;j=1

�i�j � h
NX
i=1

�i:

h 2 R is an additional parameter. The Curie-Weiss Gibbs measure is therefore

G�;h;N (�) :=
1

Z�;h;N
exp

24 �

2N

NX
i;j=1

�i�j + �h

NX
i=1

�i

35 ;
where

Z�;h;N :=
X
�2�N

exp

24 �

2N

NX
i;j=1

�i�j + �h
NX
i=1

�i

35 : (1.4)

This model can easily be analyzed by Stirling�s formula. The point is that the
Hamiltonian is a function of ��N := 1

N

PN
i=1 �i :

HN (�) = �N
�
1

2
��2N + h��N

�
;

and Z can be written as expectation under standard coin tossing:

ZN = 2
NECTN exp

�
�N�

�
��2N=2 + h��N

��
:
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The coin tossing expectation ECT can be computed in terms of Stirlings formula up to
any precision one likes. The rough large deviation behavior, in the usual large deviation
jargon, is

PCTN (��N � x) � exp [�NI (x)]

with the entropy function

I (x) =

�
1+x
2 log (1 + x) + 1�x

2 log (1� x) if x 2 [�1; 1]
1 if x =2 [�1; 1] :

Therefore,

f (�; h) = lim
N!1

1

N
logZN = log 2 + sup

x

�
�

2
x2 + �hx� I (x)

�
:

For those who are not familiar with these type of arguments, I leave it as an exercise to
derive it from Stirling�s formula.

The function x! I (x) = 1+x
2 log (1 + x) + 1�x

2 log (1� x) looks as follows

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

x

y

It is of course even. Furthermore, the function is continuous on the full interval [�1; 1]
with

lim
x!�1

I (x) = log 2;

but the tangent diverges as x ! �1: The behavior of the Curie-Weiss model is deter-
mined by the function x ! g�;h (x) :=

�
2x

2 + �hx � I (x) : This depends heavily on �
and h:
Case h = 0 : In this case the above function is even, but there is a crucial di¤erence
depending on whether � � 1 or � > 1: Below there are plots for � = 1=2; and � = 3=2:
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1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.3

0.2

0.1

x

g�;h for h = 0; � = 1=2

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

x

g�;h for h = 0; � = 3=2

The crucial di¤erence is coming from the second derivative:

dg

dx
= �x�

�
1

2
log (1 + x)� 1

2
log (1� x)

�
;

d2g

dx2
= � � 1

2 (1 + x)
� 1

2 (1� x) :

For � < 1; the second derivative is negative everywhere, and therefore the function is
strictly concave with a unique maximum at 0: This remains true for � = 1; where the
second derivative is 0 at 0; but negative for x 6= 0: However, for � > 1; the second
derivative is positive at 0; and negative for x su¢ ciently close to �1: Therefore, 0 is a
local minimum, and the maxima of the function are elsewhere. Setting the �rst derivative
0; one gets the equation m = tanh (�m) for the maximum m. For � � 1; there is just
the solution 0 for this equation, but for � > 1; there are 2 other solutions �m� : Below,
there are the two curves x! tanh (�x) for � = 3=2 (in red), and x! x (in blue).
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1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.5

1.0

x

Case h 6= 0 : In that case, 0 is never a maximum. The curve still depends on the value of
�; but it has always one unique global maximum, although it may have a local maximum
besides that. Below are two examples, both with h = 1=20; and the �rst with � = 1=2;
while the second with � = 3=2 :

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.4

0.3

0.2

0.1

x

g�;h for h = 1=20; � = 1=2

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

x

g�;h for h = 1=20; � = 3=2

It is easily checked that there is a unique m�;h 6= 0;�1, such that

g�;h (m�;h) = max
x2[�1;1]

g�;h (x) :

14



This value m�;h satis�es the mean-�eld equation

m = tanh (�h+ �m) ; (1.5)

as is easily checked.
We summarize the basic results:

Theorem 1.10
a) Let Z�;h;N be the partition function of the Curie-Weiss model as de�ned in (1.4).
Then

f (�; h) = lim
N!1

1

N
logZ�;h;N

exists is given by
f (�; h) = sup

x2[�1;1]
g (�; h) + log 2:

b) If h 6= 0; then ��N converges in P�;h;N -probability to m�;h; i.e. for any " > 0 one
has

lim
N!1

G�;h;N
�����SNN �m�;h

���� � "

�
= 0:

c) If h = 0 and � � 1; then ��N converges in P�;0;N -probability to 0: If � > 1; then
the P�;0;N -law of SN=N converges to

1

2
�m�

+
1

2
��m�

:

This means that for any 0 < " < m�; one has

lim
N!1

G�;0;N
�����SNN �m�

���� � "

�
= 1=2;

lim
N!1

G�;0;N
�����SNN +m�

���� � "

�
= 1=2:

Proof. Left as an exercise. All the statements follow easily from Stirling�s formula.

m�;h is the mean magnetization ��N in the N ! 1 limit under the Gibbs measure.
In physics literature, the equation (1.5) is usually derived via a �cavity�argument. For
that, one argues that m should be the Gibbs expectation for a single spin. By symmetry,
it doesn�t matter which one takes, so we take the last one:

m � E�;h;N (�N ) =

P
� �N exp

h
���N 1

N

PN�1
j=1 �j � �h�N � �HN�1

�
�(N�1)

�i
P

� exp
h
���N 1

N

PN�1
j=1 �j � �h�N � �HN�1

�
�(N�1)

�i ;

where �(N�1) = (�1; : : : ; �N�1) ; and HN�1 is the Hamiltonian on the �rst N � 1 spins.
Summing �rst �N out in this expression, and the other ones afterwards, one gets

E�;h;N (�N ) =
E�;h;N�1 sinh

�
� 1
N

PN�1
j=1 �j + �h

�
E�;h;N�1 cosh

�
� 1
N

PN�1
j=1 �j + �h

� :
15



Under the Gibbs measure on the �rst N � 1 spin variables, one should have

1

N

N�1X
j=1

�j �
1

N � 1

N�1X
j=1

�j � m;

the last approximation by disregarding possible �uctuations around the mean. By this
chain of arguments, one gets

E�;h;N (�N ) � tanh (�h+ �m) ;

which leads in the N !1 limit to (1.5). In spin glass theory, there are similar equations,
the TAP equations, which however are much more delicate to discuss and prove.

It is not di¢ cult to get more information than in Theorem 1.10 out with some
re�nements of the arguments. For instance one can prove that in the �one-phase region�,
i.e. either h 6= 0 or h = 0 and � � 1; the spins under G�;h;N behave like i.i.d. spins with
possibly tilted mean. To be precise, for m 2 (�1; 1) consider Bernoulli measure with
mean, i.e. pm (1) := (1 +m) =2; pm (�1) = 1� pm (1) = (1�m) =2:

Proposition 1.11
Under the above conditions, one has for any K 2 N :

lim
N!1

G�;h;N (�1 = i1; : : : ; �K = iK) =
YK

j=1
pm (ij) ;

where m = 0 for h = 0; � � 1; and m = m�;h for h 6= 0:

Proof. The easiest way to prove it is based on the well known fact that drawing
from an urn with red and black balls, without replacement, is approximately the same
as drawing with replacement, provided that the number of drawings is small compared
to the total number of balls in the urn. To be precise: Consider �1; : : : ; �N under the
Bernoulli measure PCT; then����PCT (�1 = i1; : : : ; �K = iK j ��N )�

YK

j=1
p��N (ij)

���� � " (K;N) (1.6)

uniformly in ��N ; i1; : : : ; iK ; where limN!1 " (K;N) = 0 for any K:
If we write EGibbs for the expectation under the Gibbs distribution, and if F is any

function �N ! R; then, as the Hamiltonian depends only on ��N ; one has

EGibbs (F ) =
ECT (F exp [��H])
ECT (exp [��H]) =

ECT
�
ECT (F j ��N ) exp [��H (��N )]

�
ECT (exp [��H (��N )])

= EGibbs
�
ECT (F j ��N )

�
:

Applying that to
F (�) = I (�1 = i1; : : : ; �K = iK) ;

and using (1.6), and Theorem 1.10, the claim follows.
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The proposition states that in the one-phase region, the Gibbs-measure under the
N !1 limit is simply coin tossing with possibly tilted mean. There is a similar state-
ment also in the two-phase region, i.e. � > 1; h = 0: In that case the Gibbs distribution
converges to a mixture of two tilted Bernoulli measures. Here is the statement, the proof
is left as an exercise:

Proposition 1.12
Assume � > 1 and h = 0; and let m� be the positive solution of m = tanh (�m) : Then
for any K; and any i1; : : : ; iK 2 f�1; 1g :

lim
N!1

G�;0;N (�1 = i1; : : : ; �K = iK) =
1

2

YK

j=1
pm�

(ij) +
1

2

YK

j=1
p�m�

(ij) :

These properties of the Curie-Weiss model are coming under the name �symmetry
breaking�. The coin tossing measures are the so-called �pure states�. If h 6= 0 or h = 0
and � � 1; the Gibbs measure converges to a pure state. In the case h = 0; � > 1; the
Gibbs measure converges to a mixture of two symmetric pure states. As in that case,
the relevant pure states, namely coin tossing with mean m� and �m� are not symmetric
under sign change, one says that the model �breaks�the symmetry, although, of course,
the limiting measure is still symmetric.

Even the very simplest mean �eld spin glasses have a much more complicated sym-
metry breaking which is mathematically still not fully understood.

2 The Sherrington-Kirkpatrick model, high temperature

2.1 The SK-model and other spin glass models

A spin glass is simply a Gibbs measure with a random Hamiltonian. This means that
for any � 2 �N ; the HN (�) is a random variable de�ned on some probability space
(
;F ;P) : In order to emphasize this, we sometimes write HN;! (�) ; ! 2 
:We will use
P exclusively for the probability measure on the space describing the �disorder�.

The SK-model is the �spin glass version� of the Curie-Weiss model. The set of
spin con�gurations is again �N = f�1; 1gN ; and every spin variable is interacting with
every other spin variable. However the interaction strength is random. This means that
one has a set of random variables Jij ; 1 � i < j � N; de�ned on (
;F ;P) ; and a
Hamiltonian H which depends on ! 2 
 :

HN;! (�) = �
X

1�i<j�N
Jij (!)�i�j : (2.1)

The simplest assumption one can make is that the Jij are independent centered random
variables, and even Gaussian ones (which helps a lot later, although it is not really of
importance). In the Curie-Weiss model, the interaction strengths between pairs of spins
was of order 1=N: Here the situation is di¤erent. The basic property one would like to
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have is that the total �in�uence�of the spins �j ; j 6= i; on �i is of order 1: This requires
that X

j:j>i

Jij�j +
X
j:j<i

Jji�j

is of order one, and therefore, the variance of the Jij should be 1=
p
N: We therefore

write the Hamiltonian as

�HN;! (�) =
1p
N

X
1�i<j�N

gij (!)�i�j ;

where the random variables gij ; i < j; are i.i.d. standard Gaussian random variables.
The classical short range spin glass is the Edwards-Anderson-model. In this

case, one starts with a �nite subset � �� Zd; for instance �n
def
= f�n; : : : ; ngd ; and

�n
def
= f�1; 1g�n : The Hamiltonian is then via a short range interaction:

�H (�) def= 1

2

X
i;j2�:ji�jj=1

gij�i�j :

For this model, there is essentially no mathematical theory.
The crucial feature of all spin glasses is the presence of frustrations: If one considers

three sites i; j; k with spin variables �i; �j ; �k it can happen (and actually often happens)
that from the interactions, �i; �j and �i; �k would �like�to have the same sign, but �j ; �k
would like to have opposite sign. This makes it extraordinary di¢ cult to discuss ground
states, i.e. con�gurations � with minimal energyH (�) ; a task which is trivial in classical
ferromagnetic (or antiferromagnetic) Ising type models. In fact, the Pirogov-Sinai theory
is based on the assumptions that there is a simple set of ground states, so there is no
change to apply such theories to spin glasses. Also, classical correlation inequalities like
the FKG inequality are never valid in spin glasses.

For any �xed �; this is simply a Gaussian random variable, as it is a linear combi-
nation of i.i.d. Gaussians. Furthermore, the family fHN (�)g�2�N is a 2

N -dimensional
Gaussian random vector. Its distribution is determined by its covariances. These are
easy to compute

E
�
HN (�)HN

�
�0
��

=
1

N
E

X
1�i<j�N

gij�i�j
X

1�i<j�N
gij�

0
i�
0
j

=
1

N

X
1�i<j�N

X
1�r<s�N

�i�j�
0
r�
0
sEgijgrs

=
1

N

X
1�i<j�N

�i�j�
0
i�
0
j (2.2)

=
1

2N

NX
i;j=1

�i�j�
0
i�
0
j �

1

2

=
N

2

 
1

N

NX
i=1

�i�
0
i

!2
� 1
2
:
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RN
�
�; �0

�
:=

1

N

NX
i=1

�i�
0
i (2.3)

is denoted as the overlap of the two spin con�gurations. We therefore see that the
covariances are given in terms of these overlaps

E
�
HN (�)HN

�
�0
��
=
N

2
R2N

�
�; �0

�
� 1
2
:

In particular, the variances are of order N=2:
Occasionally, it is convenient to have the gij de�ned also for i > j; and we set

gij = gji: One also includes an external �eld in the form of a sum

�h
X
i

�i

which is included in the Hamiltonian. In principle one could also consider random
external �elds in the form of

�
X
i

hi�i

where the hi are also random variables.
The important point is that one now considers the partition function, and the Gibbs

measure for �xed but �typical�!; i.e. one considers the random variable

Z�;h;N;! :=
X
�

exp

24 �p
N

X
1�i<j�N

gij (!)�i�j + h
X
i

�i

35 :
In principle, one should multiply h by �; which is usually done in physics literature, but
mathematically it is useless and awkward. As before, we write

F�;h;N;! =
1

N
logZ�;h;N;!:

The Gibbs measure is then

G�;h;N;! (�) =
1

Z�;h;N;!
exp

24 �p
N

X
1�i<j�N

gij (!)�i�j + h
X
i

�i

35 :
The �rst question one might ask is why this model is of any interest, besides the evi-

dent physics background1. One answer is that it is connected with problems probabilists
had always been interested in, namely distributions of maxima of family of random vari-
ables. Consider the family fHN (�)g�2�N ; HN (�) given in (2.1), and we are interested
in

M := max
�
(�HN (�)) :

1There is in fact an ongoing sharp controversy in the physics literature whether the SK-models and
the methods to �solve� it are of relevance to more realistic models of spin glasses.
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The minus sign is of course of no importance and we leave out the external �eld. It is
not di¢ cult to see that this maximum is of order N : One direction is trivial

P
�
max
�
(�HN (�)) � tN

�
� 2N max

�
P ((�HN (�)) � tN)

� 2N max
�
P

 
(�HN (�))p
var (HN (�))

� tNp
var (HN (�))

!

� 2NP

 
(�HN (�))p
var (HN (�))

�
p
2t
p
N

!
� 2N

1p
2�

1p
2t
p
N
exp

�
�t2N

�
;

simply because HN (�) =
p
var (HN (�)) is standard normally distributed, and the well-

known inequality Z 1

x
e�y

2=2dy � 1

x
e�x

2=2

for x > 0: We therefore see that for t >
p
log 2; we haveX

N

P
�
max
�
(�HN (�)) � tN

�
<1;

and from Borel-Cantelli, we get

lim sup
N!1

1

N
max
�
(�HN (�)) �

p
log 2; P� a:s:

A bit more delicate is the following

Exercise 2.1
Prove that for some c > 0; one has

lim inf
N!1

1

N
max
�
(�HN (�)) � c; P� a:s:

Although it is not overly di¢ cult to prove that such a c > 0 exists, it is extremely
di¢ cult to get the �correct�constant, i.e. � > 0 with

lim
N!1

1

N
max
�
(�HN (�)) = �:

One of the aims of spin glass theory is to provide a method to achieve that. Another
question is to discuss �uctuations around the maximum which, of course, is even more
challenging.

The discussion of the suprema of Gaussian random �elds (and related questions like
continuity properties) has been a big theme in probability theory since the seventies
of the last century, with important results by Dudley, Fernique, Adler, Talagrand and
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others. These results are very general, but it is usually impossible to get the correct
constant in the results above. Therefore probabilists like Talagrand were totally struck
by the fact that physicists had a theory which was able to determine the constant.

The constant � is not an easy object, but given in terms of a variational problem
which itself is quite complicated. For SK, there is no explicit expression, but the varia-
tional formula gives a way to easily compute it numerically. More striking however was
the fact that there was no real proof, but �only�a couple of hair-raising arguments, like
the notorious replica trick.

The connection with the free energy is that the ground state energy is connected
with the � !1 limit:

� 1
N
min
�
HN (�) = lim

�!1

1

N�
log
X
�

exp [��HN (�)] :

If an interchange of the � !1 and the N !1 is justi�ed, then one would have

� = lim
�!1

f (�)

�
;

where
f (�) := lim

N!1

1

N
log
X
�

exp [��HN (�)] :

We will prove the existence of f (�) in the next section, and the fact that it is non-random
which is not totally obvious.

There are similar models of interest in combinatorics, for instance in combinatorial
optimization. One such case is the optimal assignment problem. In the simplest case
one has twice N objects, say N girls and N boys. For every girl i and boy j; there is
a mutual �satisfaction�of matching i with j; say Uij : The problem is to �nd a perfect
matching, i.e. an assignment of girls to the boys such that the sum of the satisfactions
is maximal. Mathematically formulated, one is looking at

SN = max
�

NX
i=1

Ui�(i);

the maximum running over all permutations of N elements. We assume now that the
Uij are i.i.d. uniformly distributed on [0; 1] : Mathematically, it is the same whether we
are maximizing the satisfaction or minimizing it. The latter is formally slightly more
convenient. Of course, we could try to �nd a matching such that for any i; � (i) is chosen
that Ui�(i) = minj Uij ; but a moments re�ection shows that this will not work as there
may be di¤erent girls i which would choose the same boy, something which is forbidden.
It however turns out that

P
iminj Uij is not so far o¤ from SN : A simple computation

gives that

Emin
j
Uij =

1

N
+ o

�
1

N

�
;
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and therefore
E
X
i

min
j
Uij = 1 + o (1) :

It is a mathematical proved result, that

lim
N!1

ESN =
�2

6
: (2.4)

This was �rst derived in the physics literature by regarding it as spin glass problem.
One introduces a �nite temperature model by taking � > 0; and setting

F�;N =
1

N
log
X
�

exp
h
��N

X
i
Ui�(i)

i
;

one lets N ! 1; and then divide it by �; and lets � ! 1: The outcome from spin
glass computation2 was that the limit is indeed �2=6: However, this was by no means
a mathematically rigorous proof. A proof of (1.2) was �rst given by David Aldous in
20013. From the spin glass theory viewpoint however, the problem is not very interesting
and rather �trivial�, as it does not exhibit the so-called �replica symmetry breaking�
like the SK model.

As a last model (there are many others), we consider the so-called perceptron. This
is connected with neural networks in arti�cial intelligence, but we only discuss the math-
ematical aspects. The problem is to consider M randomly chosen half spaces in RN ;
call them U1; : : : ; UM : By rotational invariance of the standard Gaussian distribution,
we can describe them as

Uk = fx : x � gk � 0g ;
where gk = (gk1; : : : ; gkN ) ; and the gij are i.i.d. standard Gaussian random variables.

The problem is to �nd out for which M; the intersection of �N = f�1; 1gN with all
the half spaces is empty. One computation is easy:

E
�����N \\M

k=1
Uk

���� = 2N�M :
Therefore, if M = [�N ] ; N ! 1; and � > 1; then this expectation is exponentially
small in N; and this implies by Borel-Cantelli, that �N \

TM
k=1 Uk = ; for large N; P-a.s.

On the other hand, if � < 1; then the expected number is growing exponentially in N;
but some re�ection shows that this does not necessary mean that �N \

TM
k=1 Uk 6= ;

with large probability. In fact, it is now prove by Talagrand that there exists a number
�0 < 1 such that this set is empty for large N; provided � > �0; and non-empty, for
� < �0: Again one formulates it �rst as a �nite temperature problem by looking at the
partition function X

�

exp

"
�
X
k

1f�=2Ukg

#
2Mézard, M., Parisi, G.: Replicas and optimization. J. Physique Lett 46 (1985)
3Aldous, D.: The � (2) limit in the random assignment problem. Random Structures and Algorithms

18, 381-418 (2001)
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and hopes that one get some information about the original problem when taking �
large.

For the SK-model, the variational formula for the free energy, the Parisi formula, is
now proved, and therefore also the variational formula for the ground state energy. For
many other models like the perceptron, the situation is however much less satisfactory,
and one is probably still very far from a full understanding of spin glasses. The reason for
the success with the SK-model is to a considerably extend hidden in some very special
structures the SK has, and which other models don�t. Also for the SK, despite the
fact that the Parisi formula is proved, there are many fundamental unsolved problems,
mostly about the behavior of the Gibbs measure itself.

2.2 First properties of the free energy of the SK model

The partition function is called �quenched� in the physics jargon. In contrast, one
has the so-called �annealed�partition function which is just obtained from taking the
E-expectation

Zann�;h;N : = EZ�;h;N

=
X
�

E exp

24 �p
N

X
1�i<j�N

gij�i�j + h
X
i

�i

35
=

X
�

exp

"
h
X
i

�i

#
E
Y
i<j

exp

�
�p
N
gij�i�j

�

=
X
�

exp

"
h
X
i

�i

#Y
i<j

exp

�
�2

2N

�

= 2N cosh (h)N exp

�
(N � 1)�2

4

�
:

The annealed free energy in the N !1 limit is

fann (�; h) = lim
N!1

1

N
logZann�;h;N =

�2

4
+ log cosh (h) + log 2:

A much more complicated a¤air is the prove that the quenched free energy exists.

Theorem 2.2
a)

f (�; h) = lim
N!1

1

N
E logZ�;h;N 2 R

exists.

b)

lim
N!1

1

N
logZ�;h;N = f (�; h) ; P� a:s:

(This property is usually called �self-averaging�of the free energy).

23



c) f (�; h) is a convex function of (�; h) 2 R+ � R:

d)
f (�; h) � fann (�; h) ; 8�; h

Proof. The proof of a) is due to Guerra and Toninelli.4

Let N1; N2 2 N; and N := N1 + N2: We choose independent standard Gaussians
gij ; g

0
ij ; g

00
ij ; and de�ne for t 2 [0; 1] the HamiltonianHt (�) which depends on the g; g0; g00 :

�Ht (�) : = �

r
t

N

X
1�i<j�N

gij�i�j + �

r
1� t
N1

X
1�i<j�N1

g0ij�i�j (2.5)

+�

r
1� t
N2

X
N1<i<j�N

g00ij�i�j + h
NX
i=1

�i:

(We incorporate � into the Hamiltonian). We will need the derivative with respect to t :

� dHt (�)

dt
=

�

2

8<:
r
1

tN

X
1�i<j�N

gij�i�j (2.6)

�
s

1

(1� t)N1

X
1�i<j�N1

g0ij�i�j �
s

1

(1� t)N2

X
N1<i<j�N

g00ij�i�j

9=;
Then we de�ne the partition function

Z (t) :=
X
�2�N

exp [�Ht (�)] ;

and the Gibbs measure Gt (�) := exp [�Ht (�)] =Z (t) ; with expectation Et: (Please always
remember that these are quenched expectations, i.e. they still depend on !). Evidently,
Z (1) is the partition function ZN we are looking after (depending on the random vari-
ables g), and Z (0) is the product of two of our partition function ZN1 (g

0)ZN2 (g
00) ; where

the important point is that the factors are independent, as they depend on independent
random variables.

Di¤erentiating with respect to t; we get

d

dt

1

N
E logZ (t) =

1

N
E

1

Z (t)

dZ (t)

dt

=
1

N

X
�2�N

E
exp [�Ht (�)]

Z (t)

dHt (�)

dt
:

For the derivative we implement the expression (2.6) getting

d

dt

1

N
E logZ (t) = S1 � S2 � S3;

4Guerra, F. and Toninelli F.L.: The thermodynamic limit in mean �eld spin glass models. Comm.
Math. Phys. 230, 71-79 (2002)
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where

S1 :=
�

2
p
tN3=2

X
�2�N

X
1�i<j�N

�i�jEgij
exp [Ht (�)]

Z (t)
;

and S2; S3 are similar terms from the second and third summand of (2.6). As all the
g; g0; g00 are i.i.d., the Gaussian partial integration gives

Egij
exp [�Ht (�)]

Z (t)
= E

@

@gij

exp [�Ht (�)]

Z (t)

= E
@
@gij

exp [�Ht (�)]

Z (t)
� Eexp [�Ht (�)]

Z (t)2
@Z (t)

@gij

= E
exp [�Ht (�)]

Z (t)

@Ht (�)

@gij
� Eexp [�Ht (�)]

Z (t)2
@Z (t)

@gij
:

�@Ht (�)

@gij
= �

r
t

N
�i�j ;

@Z (t)

@gij
=
X
�2�N

exp [�Ht (�)]
@ (�Ht (�))

@gij
= �

r
t

N

X
�2�N

�i�j exp [�Ht (�)] :

We therefore get

S1 =
�2

2N2

X
�2�N

X
1�i<j�N

�i�j

24Eexp [�Ht (�)]

Z (t)
�i�j � E

exp [�Ht (�)]

Z (t)2

X
�02�N

�0i�
0
j exp

�
�Ht

�
�0
��35 ;

where we have renamed the summation in the last term into �0 to distinguish it from
the �rst summation. In the �rst part, remark that the �i�s just appear in squares, which
is 1: Therefore, we get

S1 =
�2

2N2

X
1�i<j�N

E
X
�2�N

exp [�Ht (�)]

Z (t)

� �2

2N2

X
�2�N

X
1�i<j�N

�i�jE
exp [�Ht (�)]

Z (t)2

X
�02�N

�0i�
0
j exp

�
�Ht

�
�0
��

=
�2

2N2

N (N � 1)
2

� �2

2N2

X
1�i<j�N

E
X

�;�02�N

�i�j
exp [�Ht (�)]

Z (t)
�0i�

0
j

exp [�Ht (�
0)]

Z (t)

=
�2

2N2

N (N � 1)
2

� �2

2N2

X
1�i<j�N

E [Et (�i�j)]2 :

We can sum over all i; j; and get

S1 =
�2

4N2

NX
i;j=1

�
1� E [Et (�i�j)]2

�
:
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By a similar computation, one gets

S2 =
�2

4NN1

N1X
i;j=1

�
1� E [Et (�i�j)]2

�

S3 =
�2

4NN2

NX
i;j=N1+1

�
1� E [Et (�i�j)]2

�
:

We can replace [Et (�i�j)]2 by taking expectations of two independent copies of � :
�; �0 - so called �replicas� - under the product measure G
2t on �2N : �; �

0 are then just
the two projections �2N ! �N :

[Et (�i�j)]2 = E
2t
�
�i�j�

0
i�
0
j

�
:

Then

E [Et (�i�j)]2 =
Z
E
2t;!

�
�i�j�

0
i�
0
j

�
P (d!) :

The integrated measure
R
E
2t;! P (d!) is a measure on �2N ; and we write expectations with

respect to this measure by �(2)t : With these reformulations, we have

S1 =
�2

4N2

NX
i;j=1

�
1� �(2)t

�
�i�j�

0
i�
0
j

��
(2.7)

=
�2

4

�
1� �(2)t

�
RN

�
�; �0

�2��
:

Here RN (�; �0) is the overlap of � and �0; de�ned in (2.3). Similarly, de�ne

R(1) :=
1

N1

XN1

i=1
�i�

0
i; R

(2) :=
1

N2

XN

i=N1+1
�i�

0
i;

so that

R =
N1
N
R1 +

N2
N
R2: (2.8)

Plugging that into the computation for S2 and S3; we get

d

dt

1

N
E logZ (t) = S1 � S2 � S3 = �

�2

4
�
(2)
t

�
R2 � N1

N
R21 �

N2
N
R22

�
:

From (2.8), one gets

R2 � N1
N
R21 +

N2
N
R22

and therefore
d

dt

1

N
E logZ (t) � 0:
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From that we conclude

1

N
E logZ (1) � 1

N
E logZ (0)

E
1

N
logZN � N1

N
E
1

N1
logZN1 +

N2
N
E
1

N2
logZN2 :

This is a superadditivity property of the sequence of real numbers E 1
N logZN : It is well

known and very easy that from this property it follows that

f (�; h) = lim
N!1

E
1

N
logZN

exists, and equals

sup
N
E
1

N
logZN :

In order to prove a), it only remains to show that this supremum is �nite, but this
follows from Jensen�s inequality

E
1

N
logZN �

1

N
logEZN ;

and the supremum of the latter is �nite by the annealed computation we had done before.
We in fact have the following annealed bound:

f (�; h) � �2

4
+ log cosh (h) + log 2:

b) This follows by Theorem 1.1 applied to the functions ' : RN(N�1)=2 ! R given by

' (x) = log
X
�

exp

24 �p
N

X
1�i<j�N

xij�i�j + h
NX
i=1

�i

35 :
Clearly������

X
1�i<j�N

xij�i�j �
X

1�i<j�N
yij�i�j

������ =

������
X

1�i<j�N
(xij � yij)�i�j

������
�

r
N (N � 1)

2

s X
1�i<j�N

(xij � yij)2

= kx� yk
r
N (N � 1)

2
� Np

2
kx� yk

by the Schwarz inequality, where k�k denotes the Euclidean norm on RN(N�1)=2: There-
fore, with

 (x; �)
def
=

�p
N

X
1�i<j�N

xij�i�j + h

NX
i=1

�i
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we obtain

exp [ (y; �)] exp

"
��

p
Np
2
kx� yk

#
� exp [ (x; �)] � exp [ (y; �)] exp

"
�
p
Np
2
kx� yk

#
;

and therefore

j' (x)� ' (y)j � �
p
Np
2
kx� yk ;

i.e. ' is Lipshitz with

k'kLip �
�
p
Np
2
:

From Theorem 1.1 we obtain

P
����� 1N logZN �

1

N
E logZN

���� � N�1=4
�
� 2 exp

"
�4
p
N

�2�2

#
: (2.9)

As X
N

exp

"
�4
p
N

�2�2

#
<1;

it follows by the Borel-Cantelli Lemma that with P-probability one, only for �nitely
many N; one has ���� 1N logZN �

1

N
E logZN

���� � N�1=4;

and therefore

lim
N!1

1

N
logZ�;h;N = lim

N!1

1

N
E logZ�;h;N = f (�; h) ; P� a:s:

c): Let �; �0 > 0; and h; h0 2 R; and � 2 [0; 1] : Put � (�) := ��+(1� �)�0; h (�) :=
�h+ (1� �)h0: Then

Z�(�);h(�);N =
X
�

exp

24�� + (1� �)�0p
N

X
i<j

gij�i�j +
�
�h+ (1� �)h0

�X
i

�i

35
=

X
�

8<:exp
24 �p

N

X
i<j

gij�i�j + h
X
i

�i

359=;
�

�

8<:exp
24 �0p

N

X
i<j

gij�i�j + h
0
X
i

�i

359=;
1��

�

8<:X
�

exp

24 �p
N

X
i<j

gij�i�j + h
X
i

�i

359=;
�

�

8<:X
�

exp

24 �0p
N

X
i<j

gij�i�j + h
0
X
i

�i

359=;
1��
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by the Hölder inequality. Therefore

1

N
logZ�(�);h(�);N � �

1

N
logZ�;h;N + (1� �)

1

N
logZ�0;h0;N :

Going the the N !1 limit, we get

f (� (�) ; h (�)) � �f (�; h) + (1� �) f
�
�0; h0

�
:

d) is obvious from Jensen�s inequality.

Exercise 2.3
Replace the Gaussian variables gij in the Hamiltonian by i.i.d. symmetric Bernoulli
variables �ij taking values �1: Write ZBernoulli�;h;N for the corresponding partition function.
Prove that

lim
N!1

1

N
E logZBernoulli�;h;N = f (�; h)

for all �; h; where the expectation on the left hand side is with respect to the Bernoulli-
variables �ij ; and the right hand side is the SK free energy.
Hint: Interpolate in a suitable way between the SK-Hamiltonian and the Bernoulli one,
and try to control the derivative.

In physics jargon one calls the property b) the self-averaging of the free energy. This
means that for N ! 1; it does not keep any randomness. It will be shown later, that
many properties of the SK-model shouldn�t be self-averaging (although this is not really
proved mathematically).

Another question is whether the free energy f (�; h) equals the annealed free energy.
If this happens, one typically says that the disorder is irrelevant. It will turn out that
this is never the case if h 6= 0; but it is true if h = 0 and � is small. This was �rst proved
by Aizenman, Lebowitz and Ruelle5

Theorem 2.4
Assume h = 0 and � � 1: Then

f (�; 0) =
�2

4
+ log 2:

Proof. The proof is based on the so-called �second moment method�. We compute
5Aizenman, M., Lebowitz, J. and Ruelle, D. Some rigorous results on the Sherrington-Kirpatrick

model. Comm. Math. Phys. 112, 3-20 (1987)
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EZ2 :

EZ2�;0;N =
X
�;�

E exp

24 �p
N

X
1�i<j�N

gij (�i�j + � i� j)

35
=

X
�;�

exp

24 �2
2N

X
1�i<j�N

(�i�j + � i� j)
2

35
=

X
�;�

exp

24�2
N

X
1�i<j�N

(1 + �i�j� i� j)

35
= 22N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

24�2
N

X
1�i<j�N

�i�j� i� j

35
= 22N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

�
�2

2N

�X
i
�i� i

�2
� �2

2

�

= e��
2=222N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

�
�2

2N

�X
i
�i� i

�2�
:

The �; � -sum with the 2�2N in front is just an expectation over two independent coin
tossing sequence, and then �i� i under this measure has just the same distribution as a
single coin tossing. Therefore

2�2N
X
�;�

exp

�
�2

2N

�X
i
�i� i

�2�
= 2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
:

This is exactly the partition function of the Curie-Weiss model with an additional 2�N

in front, and � replaced by �2=2: Therefore

lim
N!1

1

N
log 2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
= sup

x2[�1;1]

�
�2

2
x2 � y (x)

�
= 0

for �2=2 � 1=2; i.e. � � 1: It is in fact not di¢ cult to prove (using the trick with the
Gaussian variable at the end of Section ?? for instance) that for � < 1; one has

sup
N
2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
� C (�) <1:

It can be proved by carefully evaluating Stirling�s formula. In the next section, we
however need a similar result in a more complicated situation which can no longer be
handled by explicit computation, so I present here an argument which will work there,
too.
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The trick is to remove the square by an extra Gaussian integration, relying on the
fact that

ea
2=2 = E

�
eaZ
�

for a standard Gaussian variable Z, which is evident by completing squares in the expo-
nent

E
�
eaZ
�
=

1p
2�

Z
exp

�
az � z2=2

�
dz:

Therefore, we have6

exp

�
�2

2N

�X
i
�i

�2�
= E

�
exp

�
�p
N
Z
X

i
�i

��
:

The �-summation can now easily be done individually on the �i; leading to

2�N
X
�

exp

�
�2

2N

�X
i
�i

�2�
= E coshN

�
�p
N
Z

�
= E exp

�
N log cosh

�
�p
N
Z

��
:

Now,
d log cosh (x)

dx
= 1� tanh2 (x) � 1;

and so
log cosh (x) � x2=2;

E exp

�
N log cosh

�
�p
N
Z

��
� E exp

�
�2

2
Z2
�
=: C (�) <1;

if � < 1: Therefore, we have for � < 1

EZ2�;0;N � C (�) 22N exp

�
�2 (N � 1)

2

�
= C (�) (EZ�;0;N )2 :

Let AN := fZN � EZN=2g : Then

EZN = E (ZN ;AcN ) + E (ZN ;AN ) �
EZN
2

+
q
E
�
Z2N
�
P (AN );

and therefore

P (AN ) �
(EZN )2

4E
�
Z2N
� � C (�) > 0;

6The trick is widely used in physics, and sometimes is called �Hubbard-Stratonovich transformation�.
The physicist Res Jost (1918-1990) used the call it the �Babylonian trick�, because the Babylonians
invented the method of completing squares.
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i.e.

P
�
1

N
logZN �

1

N
logEZN �

log 2

N

�
� C (�) :

Combining with (2.9), we see that

f (�; 0) = lim
N!1

1

N
E logZN � lim

N!1

1

N
logEZN =

�2

4
+ log 2

for � < 1: Using Theorem 2.2 d), we conclude that f (�; 0) = �2=4+ log 2 for � < 1: The
same holds true for � = 1 because of the convexity of f which implies continuity, as f is
bounded.

We will see in Section 2.3 that f (�; 0) < �2=4 for � > 1:

2.3 The high temperature phase of the SK-model.

2.3.1 A toy computation

In order to motivate the form of the limiting free energy in the high-temperature phase,
we �rst look back at the Curie-Weiss model with an external �eld, i.e. where we have
the Hamiltonian (packing �; h inside the Hamiltonian)

�H (�) = �

N

X
1�i<j�N

�i�j + h

NX
i=1

�i:

We assume h > 0: There we proved that under the Gibbs measure, the �i are essentially
i.i.d. with a mean m given by the mean-�eld equation (1.5)

m = tanh (h+ �m) :

(We drop � in front of h in accordance with our habit in the SK-model).
We argue now that in the SK-model, the �i are under the Gibbs distribution still

approximately independent, at least for � small, but there is certainly no reason why
the means of the spins should be the same, or even non-random. In fact, what �nally
turns out is that the means

mi
def
= E (�i) ;

are random variables, which itself (under the probability measure of the disorder P) are
approximately i.i.d. To justify all that takes quite some e¤orts, and we probably have
no time to discuss this in details.

Assuming that for the moment, we make a toy computation, where we assume that
there is only a random interaction of the �rst spin �1 with the others �2; : : : ; �N ; but the
spins come with a deterministic a-priori tilt, not necessarily the same for the di¤erent
spins. Therefore, we look at the Hamiltonian

�H (�) = �p
N

NX
j=2

g1j�1�j +

NX
i=1

hi�i:
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If the interaction would not be present, then the means of the spins would simply be
tanh (hi) :We compute now (in the N !1 limit) the mean of the �rst spin and compare
it with tanh (h1) :

E (�1) =
P

� �1 exp [�H (�)]P
� exp [�H (�)]

:

In the computation of the sum, we can easily sum out �2; : : : ; �N :

X
�2;:::;�N

exp [�H (�)] = 2N�1eh1�1
NY
j=2

cosh

�
hj +

�p
N
g1j�1

�
:

We expand cosh up to second order:

cosh

�
hj +

�p
N
g1j�1

�
= cosh (hj) +

�p
N
g1j�1 sinh (hj) +

�2

2N
g21j cosh (hj) +O

�
N�3=2

�
= cosh (hj)

�
1 +

�2

2N
g21j +

�p
N
g1j�1 tanh (hj)

�
+O

�
N�3=2

�
:

The cosh (hj) evidently cancels out in the computation of E (�1) ; and the O
�
N�3=2�

plays no rôle in the N !1 limit. Therefore

E (�1) �

P
�1
�1 exp

h
h1�1 +

PN
j=2 log

�
1 + �2

2N g
2
1j +

�p
N
g1j�1 tanh (hj)

�i
P

�1
exp

h
h1�1 +

PN
j=2 log

�
1 + �2

2N g
2
1j +

�p
N
g1j�1 tanh (hj)

�i
:
:

Expanding the logarithm again up to O
�
N�3=2� ; we see that all the terms not containing

�1 cancel out and we �nally get

E (�1) � tanh
�
h1 +

�p
N

XN

j=2
g1j tanh (hj)

�
:

One should no remember that tanh (hj) is the mean of �j in absence of the interaction
with the �rst spin. The physicists now argue that the same formula should be true,
namely that

mi � tanh

0@h+ �p
N

X
j:j 6=i

gijm
(i)
j

1A ; (2.10)

where m(i)
j is computed as the mean under the Gibbs distribution where the interactions

with the i-th spin are put to 0: Furthermore, we have put gij
def
= gji for i > j: For

convenience, one usually sets gii = 0:
The m(i)

j can be approximated by the mj itself through a correction of order N�1=2:
This correction cannot be neglected, even in the N ! 1 limit, and it leads to an
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equation for the sequence of means, with what is called an Onsager correction term.
This is not of importance for the moment, but here is the outcome:

mi � tanh

0@h+ �p
N

X
j:j 6=i

gijmj �
�2

N
mi

NX
j=1

m2
j

1A :

These are the celebrated TAP-equations. If time allows, we will discuss them later.
Anyway, stepping back to (2.10), one sees that in

1p
N

X
j:j 6=i

gijm
(i)
j ; (2.11)

the m(i)
j are independent of the gij : Therefore, conditionally on the

n
m
(i)
j

o
; the expres-

sion is Gaussian with variance

1

N

X
j:j 6=i

m
(i)2
j � 1

N

NX
j=1

m
(i)2
j :

It is not di¢ cult to see that here the correction of the replacement of m(i)
j by mj should

not be of importance. Arguing now, that, at least in the high temperature regime, the
mi are not �far from�being i.i.d. under P; one would get that the above expression is a
constant q = q (�; h) :

1

N

X
j:j 6=i

m
(i)2
j � 1

N

X
j

m2
j � q (�; h) :

The expression (2.11) should then simply be
p
q times a Gaussian. (2.10) would then

state that
mi � tanh (h+ �

p
qZi) (2.12)

with (approximately independent) standard Gaussians Zi: Therefore, we get the self-
consistency equation for q :

q (�; h) = lim
N!1

1

N

NX
j=1

m2
j =

Z
tanh2 (h+ �

p
qz)

1p
2�
exp

�
�z2=2

�
dz:

For h > 0; this equation for q has a unique solution:

Lemma 2.5
Let �; h > 0 be arbitrary. Then the equation

q =

Z
tanh2 (h+ �

p
qz)

1p
2�
exp

�
�z2=2

�
dz (2.13)

has a unique solution q (�; h) � 0:

34



Proof. For notational convenience we write g for a standard Gaussian random
variable. Then the right hand side of (??) writes as E tanh2

�
h+ �

p
qg
�
: De�ne the

function
f (x) :=

1

x
E tanh2

�
h+

p
xg
�

on R+:

f 0 (x) = � 1

x2
E tanh2

�
h+

p
xg
�
+

1

x3=2
E
�
tanh

�
h+

p
xg
�
tanh0

�
h+

p
xg
��

= � 1

x2
E tanh2

�
h+

p
xg
�
+
1

x2
E

�p
xg
tanh (h+

p
xg)

cosh2 (h+
p
xg)

�
= � 1

x2
E tanh2

�
h+

p
xg
�
+
1

x2
E

��
h+

p
xg
� tanh (h+pxg)
cosh2 (h+

p
xg)

�
� h

x2
E

�
tanh (h+

p
xg)

cosh2 (h+
p
xg)

�
If we de�ne the random variable Y := h+

p
xg; we get

x2f 0 (x) = E

�
Y
tanhY

cosh2 Y
� tanh2 Y

�
� hE

�
tanhY

cosh2 Y

�
: (2.14)

Now, for any y > 0 one has
y < sinh y cosh y;

as the reader may check himself, and therefore

y tanh y

cosh2 y
< tanh2 y:

As both sides are even functions, it holds true for all y; except at y = 0 where both
sides are 0; and therefore, the �rst summand on the right hand side of (2.14) is strictly
negative. As to the second, we remark that Y is normally distributed with mean h and
variance x; and therefore

E

�
tanhY

cosh2 Y

�
=

1p
2�x

Z
tanh y

cosh2 y
exp

�
� 1

2x

�
y2 � 2hy + h2

��
dy

=
1p
2�x

Z
tanh y sinh (hy=x)

cosh2 y
exp

�
� 1

2x

�
y2 + h2

��
dy � 0

the second equation because tanh (y) is odd.
We conclude that f is strictly decreasing on R+:As limx!0 f (x) =1; and limx!1 f (x) =

0; we conclude that there is a unique solution of f (x) = 1:
Assuming that the above explained picture is correct, namely that for small �; the �i

under the Gibbs distribution are approximately independent with means mi; where the
mi, under P; are approximately i.i.d. with E

�
m2
i

�
= q; we can approximate q directly

from the spin variables, but we have to take a replicated system. Therefore take �; �0

under the product measure G
2!
def
= G! 
 G! with �xed disorder !; we get that

1

N

NX
i=1

�i�
0
i �

1

N

NX
i=1

m2
i � q:
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For this reason, a key ingredient of the discussion always is to prove that

1

N

NX
i=1

�i�
0
i � q

is small under the measure �(2) (�; �0) def=
R
G
2! (�; �0)P (d!) : This actually is not true

for large �; but it is for small �:

2.3.2 Guerra�s replica symmetric upper bound

The original claim by Sherrington-Kirkpatrick was that

f (�; h) = RS (�; h)
def
= inf

q�0

(
(1� q)2 �2

4
+ E log cosh (h+ �

p
qZ) + log 2

)
:

We will later see that this is correct for small enough �; but is wrong for large �: It is
readily checked that the in�mum in q satis�es the �xed point equation (2.13).

Guerra�s idea was to try a simple comparison of the system with SK-Hamiltonian
with a simple Hamiltonian with independent spins, but the correct distribution of the
tilts, namely given by (2.12). The �rst result was the following remarkable bound:

Theorem 2.6 (Guerra)
For all � > 0; h 2 R; and any N; one has

1

N
E logZ�;h;N � RS (�; h) ;

and in particular
f (�; h) � RS (�; h) :

Proof. 7The proof is again by interpolation quite similar as in (2.5). Let for an
arbitrary number q � 0; and t 2 [0; 1]

�Ht (�) = �

r
t

N

X
1�i<j�N

gij�i�j + �
p
1� t

NX
i=1

p
qgi�i + h

NX
i=1

�i (2.15)

where gi is a set of standard Gaussian variables, independent of the gij�s. Remark that
this is interpolating between the SK-Hamiltonian, and the above mentioned Hamiltonian
with independent spins.

For the moment, we have not even to assume that q is the right one, and we can just
take it arbitrary � 0. We write again

ZN (t) =
X
�

exp [�Ht (�)] ; Gt (�) =
exp [�Ht (�)]

Z (t)
; (2.16)

7The proof was �rst presented by Francesco Guerra at a conference on Vulcano in 1998.

36



� (t) =
1

N
E logZN (t) : (2.17)

Remark that

� (0) =

Z
log cosh (�

p
qx+ h)

1p
2�
e�x

2=2dx+ log 2;

� (1) =
1

N
E logZ�;h;N

We again compute the derivative of � (t) with respect to t: There is only a slight variation
of the computation in Section 2.2. The derivative of the Hamiltonian is

d (�Ht)

dt
=

�

2
p
tN

X
1�i<j�N

gij�i�j �
�

2
p
(1� t)

NX
i=1

p
qgi�i

leading to
d�

dt
= S1 � S2;

where the computation for S1 is exactly the same as in (2.7), giving

S1 =
�2

4

�
1� �(2)t

�
R2N
��
;

with

RN
�
�; �0

�
=
1

N

NX
i=1

�i�
0
i:

The computation of S2 is similar but the outcome is slightly di¤erent from the one in
Section 2.2:

S2 =
�

2N
p
1� t

E

 X
�

1

Z (t)

X
i

p
qgi�i exp [�Ht (�)]

!

=
�
p
q

2N
p
1� t

E
X
�

X
i
�i

��
�exp [�Ht (�)]

Z (t)2
@Z (t)

@gi

�
+
exp [�Ht (�)]

Z (t)

@ (�Ht (�))

@gi

�

=
�2q

2
E

"
�
X
�

X
�

RN (�; �)
exp [�Ht (�)] exp [�Ht (�)]

Z (t)2
+
X
�

exp [�Ht (�)]

Z (t)

#

=
�2q

2

�
1� �(2)t (RN )

�
:

Therefore, we get

d�

dt
=

�2

4
�
(2)
t

�
1�R2N � 2q (1�RN )

	
=

�2

4

n
(1� q)2 � �(2)t

h
(RN (�; �)� q)2

io
;
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which integrated gives

� (t)� � (0) = �2t

4
(1� q)2 � �2

4

Z t

0
�(2)s

h
(RN (�; �)� q)2

i
ds; (2.18)

and dropping the second summand and taking t = 1 :

� (1)� � (0) � �2

4
(1� q)2 :

This implies that for any N; we have

1

N
E logZ�;h;N � RS (�; h) :

The proof does not only give the desired result, but gives also an expression of the
di¤erence, namely

RS (�; h)� 1

N
E logZ�;h;N =

�2

4

Z 1

0
�
(2)
t

h
(RN (�; �)� q)2

i
dt (2.19)

In order to prove that f (�; h) = RS (�; h) ; one therefore �only�has to show that for the
optimal q (i.e. the one given by (??)), one has RN (�; �) ' q with large �(2)s -probability,
at least in the t-average. This is not true for large �; but it is true for small �; as we
will prove in the next section.

It should also be remarked that Guerra�s bound already proves that f (�; 0) < �2=4
for � > 1: Up to � = 1; the unique �xed point of (2.13) with h = 0 is at q = 0 which gives
RS (�; 0) = �2=4 for � � 1; but for � > 1; there is a �xed point at q > 0 which gives a
smaller value, so RS (�; 0) < �2=4 and Guerra�s bound proves that f (�; 0) 6= fann (�; 0) ;
as soon as � > 1: This was �rst proved by Comets8 with a more complicated argument.

2.3.3 The free energy in the high temperature case, and for non-zero ex-
ternal �eld: Quadratic replica coupling

In this chapter, we prove that RS (�; h) is the free energy of the SK-model provided � is
small enough. The line separating this high temperature region from the low temperature
one is believed to be given by the famous de Almeyda-Thouless line: f (�; h) = RS (�; h)
should be correct provided

�2
Z

1

cosh4
�
h+ �

p
qx
� 1p

2�
e�x

2=2dx � 1; (2.20)

where q (�; h) is the solution of the (2.13). This is mathematically an open problem.

8Comets, F. A spherical bound for the Sherrington-Kirkpatrick model. Astérisque 236 (1996), 103�
108.
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Theorem 2.7
f (�; h) = RS (�; h) holds for � < 1:

Unfortunately, the proof does not cover the full AT-region (2.20). Talagrand has
worked much on this problem and the results in his book characterize the high tempera-
ture region completely, but not really explicitly, and without proving that it agrees with
the AT-region.

The basic idea how to prove that f (�; h) = RS (�; h) for small � is to use the
expression (2.19) and try to show that the right hand side goes to zero. There are a
number of variants of the method. In principle, it would be desirable to have one which
does not rely on special tricks like dropping error terms which by luck are positive. I
present here an argument due to Guerra-Toninelli which still very much relies on such
tricks.

From (2.18), we see that the �only�thing to prove is thatZ 1

0
�
(2)
t

h
(RN (�; �)� q)2

i
dt

approaches 0 as N ! 1: We start by estimating �(2)t
h
(RN (�; �)� q)2

i
using Jensen:

For any positive �; we have

�

4
�
(2)
t

�
RN

�
�; �0

�
� q
�2

=
�

4
EE
2t

�
RN

�
�; �0

�
� q
�2

� 1

2N
E log E
2t exp

�
�

2
N
�
RN

�
�; �0

�
� q
�2�

=
1

2N
E log

P
�;�0 exp

h
�
2N (RN (�; �

0)� q)2
i
e�Ht(�)�Ht(�

0)0P
�;�0 e

�Ht(�)�Ht(�0)0

=
1

2N
E log

X
�;�0

exp

�
�

2
N
�
RN

�
�; �0

�
� q
�2 �Ht (�)�Ht

�
�0
��

� 1

2N
E log

X
�;�0

e�Ht(�)�Ht(�
0)0

To shift the RN (�; �0)� q term into the exponent is of course quite a brutal move, but
it turns out to convenient. Remark that the second summand is simply � (t) : We write

Z (t; �)
def
=
X
�;�0

exp

�
�

2
N
�
RN

�
�; �0

�
� q
�2 �Ht (�)�Ht

�
�0
��
; (2.21)

and
 (t; �)

def
=

1

2N
E logZ (t; �) ;

so that we get the estimate

�

4
�
(2)
t

�
RN

�
�; �0

�
� q
�2 �  (t; �)� � (t) : (2.22)
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We should remark that we can interpret the exponent in (2.21) above as a Hamiltonian,
say Ht;� (�; �

0) on �2N , where the two copies are coupled together by the quadratic term.
We write Gcoupt;� (�; �0) for the corresponding Gibbs measure..q will later be chosen to be
the unique solution of (2.13), but for the moment, this is of no relevance. We will drop
the parameters N; �; h in the notations, as long as we do nothing with them.

We have now to compute the partial derivatives with respect to t and �: The �-
derivative is easy:

@ 

@�
=
1

4
�coupt;�

h�
RN

�
�; �0

�
� q
�2i

;

where �coupt;�
def
= EGcoupt;� : The computation of the t-derivative is essentially the same as in

the last section. Remark however that we already start with two replicas, and so the
derivative produces two additional ones. The outcome is

@ 

@t
=

�2

4

n
1 + �coupt;�

h
RN

�
�; �0

�2i� 2�coup(2)t;�

h
RN (�; �)

2
io

��
2q

2

n
1 + �coupt;�

�
RN

�
�; �0

��
� 2�coup(2)t;� [RN (�; �)]

o
=

�2

4

n
�coupt;�

h�
RN

�
�; �0

�
� q
�2i

+ (1� q)2 � 2�coup(2)t;�

h
(RN (�; �)� q)2

io
Here we stress a bit the notation: RN (�; �) refers to taking the overlap between two
con�gurations �; � ; being however part of a duplicated system ((�; �0) ; (� ; � 0)) ; and

�
coup(2)
t;�

h
RN (�; �)

2
i
then means

�
coup(2)
t;�

h
RN (�; �)

2
i
def
= E

X
�;�0�;� 0

RN (�; �)
2 1

Z2
e�H

coup(�;�0)�Hcoup(�;� 0):

It should be remarked that �; �0 are coupled through the quadratic replica coupling in
the Gibbs measure, whereas (�; �0) and (� ; � 0) uncoupled.

The clever idea by Guerra and Toninelli was to choose � dependent on t in an
appropriate way. We set � = � (t) = ��2+�2 (1� t) ; � > 0 speci�ed later. Remark that
for t = 1; the coupling parameter � is small but still positive, and for t = 0; it is large.
The trick of this interpolation is to relate the t = 1 case with still a small coupling to the
t = 0 case with a larger coupling. The large coupling is of course bad for the analysis,
but as it is at t = 0 where the spin variables are independent, we will be able to handle
that by tricks we essentially already have done. Anyway, plugging in the expression we
have obtained for the derivatives, we get

d (t; � (t))

dt
=
�2

4
(1� q)2 � �2

2
�
coup(2)
t;�

h
RN (�; �)

2
i
� �2

4
(1� q)2 :

Therefore

 (t; � (t)) � �2t

4
(1� q)2 +  (0; � (0)) ; (2.23)
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and using (2.22), we have, writing

�N (�; h; q; �)
def
=  (0; � (0))� � (0)

� (t)

4
�
(2)
t

�
RN

�
�; �0

�
� q
�2 � �2t

4
(1� q)2 +  (0; � (0))� � (t)

= �� [� (t)� � (0)] + �2t

4
(1� q)2

= �+
�2

4

Z t

0
�(2)s

�
RN

�
�; �0

�
� q
�2
ds;

the last equation, using (2.18). For all t; one has � (t) � ��2 > 0; 8t 2 [0; 1] ; and
Gronwall�s lemma immediately implies

Lemma 2.8
Assume that for some �; �; h; q; and one has

lim
N!1

�N (�; h; q; �) = 0: (2.24)

Then

lim
N!1

Z 1

0
�(2)s

�
RN

�
�; �0

�
� q
�2
ds = 0;

and consequently

f (�; h) =
�2 (1� q)2

4
+

1p
2�

Z
log cosh (h+ �

p
qz) e�z

2=2dz:

In particular, if (2.24) is true with q = q (�; h) ; then f (�; h) = RS (�; h) : (Actually,
(2.24) is never true unless q = q (�; h)).

We therefore �nish the proof of Theorem 2.7 by proving

Lemma 2.9
If �0 = (1 + �)�2 < 1:

lim
N!1

�N (�; h; q (�; h) ; �) = 0:

Proof. The proof we give is somewhat suboptimal, as it requires � < 1 also for
large h: With some additional work one could do better, but it seems to be impossible
to prove the result in the full AT-region in the way we proceed.

�N =
1

2N
E logEG
20 exp

�
� (0)N

2

�
RN

�
�; �0

�
� q
�2�

;

Let�s �rst check what the rôle of (2.13) is: For �xed (gi) ; under G
20 := G
2t=0; the
�i; �

0
i are independent random variables with distribution

G0 (�i = 1) =
e�
p
qgi+h

2 cosh
�
�
p
qgi + h

� ;
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and therefore with expectation

G0 (�i) = tanh (�
p
qgi + h) :

Under G
20 ; the � i := �i�
0
i are independent �1 random variables with expectation

tanh2
�
�
p
qgi + h

�
; and therefore

E
20
�
1

N

X
i
� i

�
=
1

N

X
i

tanh2 (�
p
qgi + h) '

Z
tanh2 (�

p
qx+ h)

1p
2�
e�x

2=2dx

with large P-probability, which is exactly q for q = q (�; h) : By the LLN, we therefore
have that 1

N

P
i � i� q ' 0 with large P
G


2
0 -probability. The situation is therefore very

similar to the one already encountered in the proof of Theorem 2.4, where the �i�0i where
symmetric and therefore just coin tossing. Here there is the complication that the tilt
is random.

We write � for the probability G
20 ; and set

mi := tanh
2 (�

p
qgi + h) = E� (� i) ;

pi := � (� i = 1) =
1 +mi

2
� 1=2:

Keep in mind that pi;mi depend on the random variables gi:We use the same trick to
linearize the square in an exponent by introducing an auxiliary Gaussian variable, say
Z :

E� exp

�
�0
2
N
�
RN

�
�; �0

�
� q
�2�

= E� exp

"
�0
2
N

�
1

N

XN

i=1
� i � q

�2#

= E�EZ exp

�p
�0NZ

�
1

N

XN

i=1
� i � q

��
(2.25)

= EZ

(
exp

h
�q
p
�0NZ

i
E� exp

"
Z

r
�0
N

XN

i=1
� i

#)

= EZ

�
exp

h
�q
p
�0NZ

iYN

i=1

h
pie
p
�0=NZ + (1� pi) e�

p
�0=NZ

i�
= EZ

�
exp

h
�q
p
�0NZ

i
exp

�XN

i=1
log
�
pie
p
�0=NZ + (1� pi) e�

p
�0=NZ

���
:

Remark now that for any p 2 (0; 1) and � 2 R one has

log
�
pe� + (1� p) e��

�
� (2p� 1)�+ �2

2
: (2.26)
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To see this, we compute the �rst two derivatives

d

d�
log
�
pe� + (1� p) e��

�
=

pe� � (1� p) e��
pe� + (1� p) e��

d2

d�2
log
�
pe� + (1� p) e��

�
= 1�

�
pe� � (1� p) e��
pe� + (1� p) e��

�2
� 1:

As the derivative at 0 is 2p� 1; (2.26) follows. Implementing in (2.25), we get

E� exp

�
�0
2
N
�
RN

�
�; �0

�
� q
�2�

� EZ

(
exp

h
�q
p
�0NZ

i
exp

"
Z
XN

i=1
mi

r
�0
N
+
�0
2
Z2

#)

= EZ

�
exp

�
Z
p
�0N

�
1

N

XN

i=1
mi � q

�
+
�0
2
Z2
��

=
1p
2�

Z
exp

�
x
p
�0N

�
1

N

XN

i=1
mi � q

�
+
�0 � 1
2

x2
�
dx:

The integral is convergent for �0 < 1; and gives there

1p
1� �0

exp

"
�0N

2 (1� �0)

�
1

N

XN

i=1
mi � q

�2#
:

Summarizing, we get

�N (�0; q) =
1

2N
E log E
2t=0 exp

�
�0
2
N
�
RN

�
�; �0

�
� q
�2�

� 1

2N
E log

1p
1� �0

exp

"
�0N

2 (1� �0)

�
1

N

XN

i=1
mi � q

�2#

=
1

2N
log

1p
1� �0

+
�0

4 (1� �0)
E
�
1

N

XN

i=1
mi � q

�2
which converges to 0; provided �0 < 1:

It is evident that the lemma �nishes the proof of Theorem 2.7: If � < 1; we can
choose � > 0 such that (1 + �)�2 < 1: Then we can apply Lemma 2.9, and then Lemma
2.8.

3 Ruelle�s probability cascades

3.1 Derrida�s REM and its free energy

The main di¢ culty of the SK-model is coming from the fact that the Gaussian random
variables (2.1) are correlated. Derrida had the brilliant idea to ask if something inter-
esting is happening if one just considers i.i.d. random variables. However, one wants
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to keep the variance of the right order. The SK-Hamiltonian has a variance of order
N: We assume that the variance is exactly N: Evidently, then also the � need not to
carry an internal structure. We therefore assume that we have just 2N independent
Gaussian random variables, call them X

(N)
� ; 1 � � � 2N ; de�ned on some probability

space (
;F ;P), which are centered and have variance N: Of course, one may still assume
that � 2 �N ; but this will be of no relevance here. We then de�ne the �Gibbs measure�
on the � by de�ning for any ! 2 
; and any � > 0

G!;�;N (�) =
exp

h
�X

(N)
� (!)

i
Z!;�;N

; (3.1)

where Z!;�;N =
P

� exp
h
�X

(N)
� (!)

i
: The free energy is as usual de�ned by

f(�) = lim
N!1

1

N
logZ!;�;N :

In principle, this could still depend on !; but we will see in a moment, that limit exists
almost P-almost surely, and does not depend on !: In fact, we have the following result:

Theorem 3.1
f(�) exists almost surely and is given by

f(�) =

(
�2

2 + log 2 if � �
p
2 log 2p

2 log 2� if � �
p
2 log 2

:

The high temperature value is again the annealed free energy

lim
N!1

1

N
logEZ�;N :

Curiously, it is not true that EZ2� � C (EZ�)2 up to the correct critical value:

EZ2� =
X
�;�0

E exp
h
�
�
X(N)
� +X

(N)
�0

�i
=

X
�

exp
�
2�2N

�
+
X
� 6=�00

exp
�
�2N

�
= exp

�
2�2N +N log 2

�
+ 2N

�
2N � 1

�
exp

�
N�2

�
:

The �rst summand dominates the second as soon as � >
p
log 2; and in fact,

EZ2�
(EZ�)

2 is

exponentially growing in this case. One therefore has to argue slightly more subtle than
in the SK case. The free energy of the REM is not really of relevance for spin glass
theory. It is the Gibbs distribution which is much more interesting.

Proof of Theorem 3.1. The trick is to apply the �second moment method�not
directly to Z but to

AN (s)
def
= #f� : X(N)

� � sNg: (3.2)
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Let � as usual be the standard normal distribution function. Then

EAN (s) = 2N
�
1� �

�
s
p
N
��
� 2Ne�s2N=2:

Here we use the following notation: Given two sequences faNg ; fbNg of positive real
numbers, which may depend on other parameters (like s above), then we write aN � bN ;
provided for any " > 0 there exists N0 (which may depend on the auxiliary parameters),
such that

e�"NaN � bN � e"NaN
for N � N0: N0 may depend on the parameters (of course it depends on " anyway). If
N0 can be chosen independently of some parameters involved, like s; then we say that
the relation aN � bN holds uniformly in these parameters.

We also use the same notation for sequences of positive random variables, meaning
then that the relation holds almost surely.

Remark that for s >
p
2 log 2; EAN (s) converges to 0; exponentially in N: From the

Markov inequality, one gets P (AN (s) 6= 0) converges to 0; exponentially fast, and then
by Borel-Cantelli argument, we get that AN (s) = 0 for large enough N; a.s. As this
holds true for all s >

p
2 log 2; we get

P
�
lim sup
N!1

1

N
sup
�
X(N)
� �

p
2 log 2

�
= 1 (3.3)

For the second moment, we get

EAN (s)2 = 2N
�
1� �

�
s
p
N
��
+ 2N (2N � 1)

�
1� �

�
s
p
N
��2

;

we see that for 0 � s <
p
2 log 2; this is [EAN (s)]2 ; up to a factor, which is exponentially

close to 1: From that we get

AN (s) � EAN (s) = 2N
�
1� �

�
s
p
N
��
� exp

�
N

�
log 2� s2

2

��
:

As AN (s) is decreasing in s; this is easily seen to hold uniformly on 0 � s � s0 for an
arbitrary s0 <

p
2 log 2: Precisely: Given an " > 0; we have that almost sure, one has

exp

�
N

�
log 2� s2

2
� "
��

� AN (s) � exp
�
N

�
log 2� s2

2
+ "

��
(3.4)

for s 2 [0; s0] ; if N is large enough. For s � 0; clearly AN (s) � AN (0) � 2N : We get
for arbitrary s0 <

p
2 log 2 < s1X

�

e�X
(N)
� = N�

Z 1

�1
AN (s)e

N�sds

= N�

�Z 0

�1
+

Z s0

0
+

Z s1

s0

+

Z 1

s1

�
AN (s)e

N�sds:
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The fourth part is 0; the third, we estimate from above by AN (s0) e�Ns1 ; and by 0 from
below, the second is estimated by (3.4), and the �rst is estimated from above by 2N ;
and from below by 0: Getting everything together the reader will have no di¢ culty to
check that

lim
N!1

1

N
log
X
�

e�X
(N)
� = sup

s�
p
2 log 2

�
�s

2

2
+ �s+ log 2

�
=

(
�2

2 + log 2 if � �
p
2 log 2p

2 log 2� if � �
p
2 log 2

:

We next want to describe the large N behavior of the Gibbs measure G!;�;N . We
have to distinguish between the high temperature case � <

p
2 log 2; and the low tem-

perature case � >
p
2 log 2: We abstain from discussing the critical case � =

p
2 log 2:

The fundamental di¤erence is that in the high temperature case, the Gibbs measure
is concentrated on a growing number of energy levels, which become dense and denser
packed as N ! 1: In contrast, in the low temperature regime, the Gibbs distribution
is essentially concentrated on the top energy levels. We now make this precise.

Exercise 3.2
Assume � <

p
2 log 2

a) For any " > 0; there exist K; � > 0 such that

P
�n
! : G!;�;N

�n
� : X� 2

h
�N �K

p
N; �N +K

p
N
io�

� 1� "
o�

� 1� e��N ;

i.e. up to a negligible P-probability, G is concentrated ��s for which the energy levels are
in a window of size of order

p
N around �N: (The fact that exactly � is the value where

the energy levels concentrate under the Gibbs measure is an �accident�.)
b) max� P!;�;N (�) is exponentially decaying, P-a.s.

The low temperature regime � >
p
2 log 2 is more interesting, as there, the energies

get a macroscopic but random weight. For any sequence aN of real numbers,
P

� �Xa�aN
de�nes a point process on R:We will sometimes just call such an object �the point process
fX� � aNg��.

Proposition 3.3
If aN =

p
2 log 2N � 1

2
p
2 log 2

logN + 1
2
p
2 log 2

log(2�); then the above point process con-

verges weakly to a PPP
�p
2 log 2 exp

�
�
p
2 log 2t

�
dt
�
:

Proof. We denote by QN the law of
P

� �Xa�aN . If � 2 C+o (R); the

LQN (�) = E exp

"
�
X
�

�
�
X(N)
� � aN

�#

=

�
1p
2�N

Z
exp

�
��(x� aN )�

x2

2N

�
dx

�2N

=

(
1� 1p

2�N

Z �
1� e��(x)

�
exp

"
�(x+ aN )

2

2N

#
dx

)2N
:
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We abbreviate

� (x;N) :=
1p
2�N

�
1� e��(x)

�
exp

"
�(x+ aN )

2

2N

#
;

and so

LQN (�) = exp

�
2N log

�
1�

Z
� (x;N) dx

��
:

As � has compact support, there exist K > 0 such that � = 0 outside [�K;K] ; and
therefore � (x;N) = 0, too, outside this interval. On the other hand

exp

"
�(x+ aN )

2

2N

#
=
p
4� log 2e�x

p
2 log 2 exp [�N log 2]

p
N(1 + o(1));

uniformly in x 2 [�K;K] ; and therefore

� (x;N) = 2�N
�
1� e��(x)

�p
2 log 2e�x

p
2 log 2(1 + o(1));

uniformly in x 2 [�K;K]. Expanding log (1� ") = �" � O
�
"2
�
for " small, it follows

from the fact that � (x;N) = 0 outside [�K;K] :

exp

�
2N log

�
1�

Z
� (x;N) dx

��
= exp

�
�
Z �

1� e��(x)
�p

2 log 2e�x
p
2 log 2dx(1 + o(1)) +O

�
2�N

��
;

i.e.

lim
N!1

LQN (�) = exp

�
�
p
2 log 2

Z �
1� e��(x)

�
exp

h
�
p
2 log 2x

i
dx

�
:

3.2 The Poisson-Dirichlet point process

We now discuss the limiting Gibbs distribution of the Random Energy Model for � >p
2 log 2: First remark that applying Lemma 1.9 to the function R 3y ! exp [�y] 2

R+ := (0;1); we obtain

Corollary 3.4
The point process n

exp�
�
X(N)
� � aN

�o
�

converges weakly to the Poisson point process with intensity measure mt�m�1dt; where

m = m(�) =

p
2 log 2

�
2 (0; 1):
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A kind of a proof. Let [t; t+ h] be an in�nitesimal interval in R+; then in the
N !1 limit

P
�
9� : exp�

�
X(N)
� � aN

�
2 [t; t+ h]

�
= P

�
9� : X(N)

� � aN 2
�
log t

�
;
log (t+ h)

�

��
= P

�
9� : X(N)

� � aN 2
�
log t

�
;
log t

�
+

h

t�

��
=

h

t�

p
2 log 2 exp

h
�
p
2 log 2��1 log t

i
= hmt�m�1:

The Poisson point processes with this intensity play an absolutely crucial role in the
Parisi theory of spin glasses.

Lemma 3.5
Let � be a PPP

�
mt�m�1dt

�
on R+ with the parameter m 2 (0; 1) : Then � (R+) =1,

almost surely, but
R
R+ t� (dt) <1 almost surely.

Proof. For any n > 0; one has

�n := m

Z 1

1=n
t�m�1dt <1;

but the expression diverges if n ! 1: Therefore Un = �([1=n;1)) is Poisson with
parameter �n; and Un " � (R+) : As limn!1 �n =1; it follows that � (R+) =1 almost
surely.

For the second statement, we would like to apply Lemma 1.4, but this is not directly
possible, since

E

Z
R+
t� (dt) =

Z
R+
tmt�m�1dt =1:

However, we have

E

Z
(0;1)

t� (dt) =

Z
(0;1)

tmt�m�1dt <1;

as we assume m < 1; and thereforeZ
(0;1)

t� (dt) <1; a:s:

On the other hand, because
R1
1 t�m�1dt < 1; we have that � ([1;1)) < 1; and as �

is a point measure, we have that
R
[1;1) t� (dt) <1; almost surely. (If � =

P
��k ; thenR

[1;1) t� (dt) is simply the sum over those �k which are � 1). Together, we conclude
that

R
R+ t� (dt) <1 almost surely.

We can represent � by a sequence f�kg of random variables, taking values in R+:
As � (R+) =1; this is an in�nite sequence. There exists however a largest element, as
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follows from � ([1;1)) < 1; and therefore, we can choose the sequence f�kg ordered
downwards

�0 > �1 > �2 > : : : > 0:

We will always do that without usually specially mentioning it. AsZ
R+
t� (dt) =

X
�i <1; a:s:

we can transform the point process by normalizing the �l :

�i
def
=

�iP
j �j

:

Evidently, this de�nes a point process f�ig which lives on positive point con�gurations
which sum up to 1: Such a point process cannot be Poissonian. In case f�ig is a point
process on R+ with

P
i �i; we write f�ig = N (f�ig) : (The reader will have no di¢ culty

to check that this operation is measurable with respect to the Borel-�eld generated by
the vague topology.)

Starting with a PPP
�
mt�m�1dt

�
, the point process obtained by this normalization

procedure is called the Poisson-Dirichlet point process and is denoted by PD(m) :
The following result is plausible, but a bit cumbersome to prove.

Theorem 3.6
Let G�;N (�) the energies of Derrida�s REM with � >

p
2 log 2; and let m def

=
p
2 log 2=�:

Then fG�;N (�)g� converges weakly as N !1 to PD(m) provided m < 1:

Remark 3.7
As a preparation to the next section, we check how the parameter m is changed when we
change the number of energies, and their variance. So we assume we have 2�N variables
of variance �2N: First remark that if

fX�g� ! PPP (f (t) dt) ;

then for " > 0

f"X�g� ! PPP

�
1

"
f

�
t

"

�
dt

�
:

Our random variables X�; 1 � � � 2�N ; of variance 2N can be written as p
�
�X�;

where the �X� have variance N
def
= �N: Therefore, the point process

fX�g =
�
 �X�=

p
�
	
! PPP

�p
�



p
2 log 2e�(

p
2� log 2=)tdt

�
:

The point process of the Gibbs measure then converges to PD(m) with

m
def
=

p
2 log 2

p
�

�
;

provided, of course, that m < 1:

49



The Poisson point processes PPP
�
ae�atdt

�
on R; and PPP

�
at�a�1dt

�
on R+ have

a number of remarkable properties. An important one is an invariance property under
special transformations. We formulate it for the PPP

�
ae�at

�
: This point process has

a largest point, and therefore, we can represent it as f�ig ; where �0 > �1 > � � � are
real-valued random variables.

Proposition 3.8
a) Let f�ig be a PPP

�
ae�atdt

�
, and X0; X1; : : : be i.i.d. real random variables sat-

isfying M (a) = EeaXi < 1; being independent of the point process, too. Then�
�i +Xi � 1

a logM (a)
	
is also a PPP

�
ae�atdt

�
b) Let

�
�ki
	
i
; k 2 N be an i.i.d. sequence of PPP

�
ae�atdt

�
; and let (xk) be a sequence

of real numbers satisfying m (a) def=
P

k e
axk <1: Then the point processn

�ki + xk � (logm (a)) =a
o
i;k

is also a PPP
�
ae�atdt

�
:

Proof. a) Let � 2 C+o (R) : Then

E

�
exp

�
�
X

i
�

�
�i +Xi �

1

a
logM (a)

���
= E�

Y
i
EX exp

�
��
�
�i +Xi �

1

a
logM (a)

��
= E�

Y
i
exp [� (�i)] ;

E� being the expectation with respect to the point process, and EX with respect to the
Xi; and where

exp [� (x)] = EX exp

�
��
�
x+X � 1

a
logM (a)

��
:

There is a slight problem as  has only compact support provided the Xi are bounded
random variables. Assuming this for the moment, we get

E
�
exp

h
�
X

i
� (�i +Xi)

i�
= exp

�
�a
Z �

1� e (x)
�
e�axdx

�
= exp

�
�aEX

Z �
1� exp

�
��
�
x+X � 1

a
logM (a)

���
e�axdx

�
= exp

�
� a

M (a)
EX

Z
(1� exp [�� (x)]) e�axeaXdx

�
= exp

�
� a

M (a)

Z
(1� exp [�� (x)]) e�axdxEXeaX

�
= exp

�
�a
Z
(1� exp [�� (x)]) e�axdx

�
;
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which proves the desired result. For general Xi (not necessarily bounded), we use a

truncation X(K)
i := Xi1fjXij�Kg: Then with MK (a) := EeaX

(K)
i

lim
K!1

MK (a) =M (a)

is evident, but we have to prove that�
�i +X

(K)
i � 1

a
logMK (a)

�
!
�
�i +Xi �

1

a
logM (a)

�
weakly. This is left to the reader to check.

b) With � as above, we have

E

�
exp

�
�
X

i;k
�

�
�ki + xk �

logm (a)

a

���
=

Y
k
Ek exp

�
�
X

i;k
�

�
�ki + xk �

logm (a)

a

��
=

Y
k
exp

�
�a
Z �

1� e�
�
x+xk� logm(a)

a

��
e�axdx

�
=

Y
k
exp

�
� 1

m (a)
eaxka

Z �
1� e�(x)

�
e�axdx

�
= exp

�
�
X

k

1

m (a)
eaxka

Z �
1� e�(x)

�
e�axdx

�
= exp

�
�a
Z �

1� e�(x)
�
e�axdx

�
;

as claimed.
We can immediately translate this invariance property in one for PPP

�
at�a�1dt

�
by

using the fact that if f�ig is a PPP
�
ae�atdt

�
then f�ig with �i

def
= e�i is a PPP

�
at�a�1dt

�
:

Corollary 3.9
a) Let f�ig be a PPP

�
at�a�1

�
on R+; and let fYig be a sequence of i.i.d. positive

random variables with C (a) := E (Y a
i ) <1; also independent of the point process.

Then n
Yi�i=C (a)

1=a
o

is a PPP
�
at�a�1dt

�
:

b) Let �k =
�
�ki
	
i
; k 2 N be an i.i.d. sequence of PPP

�
at�a�1dt

�
�s; and let fykg

be a sequence of positive real numbers satisfying C (a) def=
P

k y
a
k < 1: Then the

point process
n
yk�

k
i =C (a)

1=a
o
i;k
is also a PPP

�
at�a�1dt

�
:
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Proof. We present �i = e�i as above, and Yi = eXi : Then C (a) = E
�
eaXi

�
=M (a)

from the last proposition. Then

Yi�i=C (a)
1=a = exp

�
�i +Xi �

1

a
logM (a)

�
;

and we can apply the last proposition. b) is similar.
The corollary will have a simple consequence which will be of crucial importance:

Lemma 3.10
Let 0 < a < a0 < 1; y = fyig be a sequence with C (a;y)

def
=
P

k y
a
k < 1; and

�k =
�
�ki
	
i
; k 2 N be an i.i.d. sequence of PPP

�
at�a�1dt

�
�s. Then

X
i;k

�
yk�

k
i

�a0
<1;

almost surely, and

N
 ��

yk�
k
i

�a0�
i;k

!
=L PD

� a
a0

�
:

In particular, the law of the right-hand side does not depend on the sequence y:

Proof. By b) of the above corollary, we know that
n
yk�

k
i =C (a;y)

1=a
o
i;k
is a

PPP
�
at�a�1dt

�
: As

R 1
0

�
at�1�a

�a0
dt <1; it follows that

X
i;ki

�
yk�

k
i =C (a;y)

1=a
�a0

<1;

almost surely, i.e. X
i;ki

�
yk�

k
i

�a0
<1; a:s:

The point process ��
yk�

k
i =C (a;y)

1=a
�a0�

i;k

is a PPP
�
a
a0 t

�a=a0�1dt
�
: As the constant 1=C (a;y)a

0=a cancels out at the normalization

procedure, the claim follows.
It will be important to know all the moments of a PD(a) : To prepare that we

consider the following situation: Let f be a Lebesgue integrable non-negative function
on R+: We write � :=

R1
0 f (t) dt: We consider a PPP (f (t) dt) on R+: Then, as the

intensity measure of the point process is �nite, we can represent it as (see 1.8 in the
introduction) f�ig1�i�S ; where S is Poisson with parameter �; and f�ig is an i.i.d.
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sequence with distribution f (t) := f (t) =�: On the event fS � 1g we can normalize the
points �1; : : : ; �S by putting

�i :=
�i
Z
; i � S; where Z :=

XS

j=1
�j :

For r > 0; we want to compute

E

�XS

i=1
�ri ; S � 1

�
= E

0@XS

i=1

�ri�PS
j=1 �j

�r ; S � 1
1A

=

1X
k=1

P (S = k)E

0@Xk

i=1

�ri�Pk
j=1 �j

�r
1A

=

1X
k=1

P (S = k) kE

0@ �r1�
�1 +

Pk
j=2 �j

�r
1A :

Remark now that
Pk

j=2 �j is independent of �1; and furthermore

kP (S = k) = �P (S = k � 1) ;

(as S is Poisson). Therefore, de�ning
PS

i=1 �
r
i = 0 if S = 0; we have

E

�XS

i=1
�ri

�
=

Z 1

0
dtf (t) trE

�
1

(t+ Z)r

�
:

We can now extend that to density functions f on R+; satisfying
R1
0 f (t) dt = 1;R1

0 tf (t) dt <1;
R1
1 f (t) dt <1: Then a PPP (f (t) dt) has in�nitely many point, but

only �nitely many above a �xed value " > 0; i.e. the points accumulate at 0: Furthermore
Z :=

P
�i is �nite almost surely. We can approximate such a Poisson point process by

point processes PPP (fn (t) dt) where fn (t) = f (t) 1t�1=n: By a limiting procedure, we
then get

Lemma 3.11

E
�X

i
�ri

�
=

Z 1

0
dtf (t) trE

�
1

(t+ Z)r

�
understanding that if one side is in�nite, then the other is, too.

Exercise 3.12
Assume again that f : R+ ! [0;1) satis�es

R1
0 f (t) dt =1;

R1
0 tf (t) dt <1; and let

f�ig be a PPP (f (t) dt) Let furthermore r1; : : : ; rk > 0; and N :=
Pk

i=1 ri: Set

X
(k)
r :=

X�

i1;:::;ir
�r1i1 �

r2
i2
� � � � � �rkik ; (3.5)
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where
P�

i1;:::;ir
means that we take the sum over k-tuples which are all distinct. Then

E
�
X
(k)
r

�
=

Z 1

0
dt1 � � �

Z 1

0
dtk
Yk

j=1

�
t
rj
j f (tj)

�
E

0B@ 1�Pk
j=1 tj + Z

�N
1CA ; (3.6)

where again
Z :=

X
j
�j :

(One should remark that it is not necessary to assume rj 2 N).

We apply this to prove the following

Proposition 3.13
Let f�igbe a PD(m) with m < 1: Let furthermore r1; : : : ; rk be as in Exercise 3.12, but

assuming that they are natural numbers, and put N :=
Pk

i=1 ri: Then with X
(k)
r as in

(3.5), one has

EX
(k)
r =

(k � 1)!
(N � 1)!m

k�1
kY
i=1

g (ri;m) ;

where

g (r;m) :=

�
1 if r = 1
(r � 1�m) (r � 2�m) � � � � � (1�m) if r � 2 (3.7)

Proof. We use (3.6) with f (t) = mt�m�1:
Let�s �rst look at the special case k = 1; r1 = r � 2: We have

E
�X

i
�ri

�
= m

Z 1

0
dt t�m+r�1E

�
1

(t+ Z)r

�
;

and partial integration gives

m

Z 1

0
dt t�m+r�1E

�
1

(t+ Z)r

�
= m

r � 1�m
r � 1

Z 1

0
dt t�m+r�2E

�
1

(t+ Z)r�1

�
=

r � 1�m
r � 1 E

�X
i
�r�1i

�
:

Iterating, we get

E
�X

i
�ri

�
=
g (r;m)

(r � 1)!E
�X

i
�i

�
=
g (r;m)

(r � 1)! :

In the same way, one proves by partial integration that for k � 2;

EX
(k)
r =

(k � 1)!
(N � 1)!

kY
i=1

g (ri)EX
(k)
(1;:::;1):
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It therefore remains to prove that EX(k)
(1;:::;1) = mk�1: This is evident if k = 1: If we have

proved it up to k � 1; then we have also proved the general formula up to k � 1: For k;
we write

X
(k)
(1;:::;1) =

X�

i1;:::;ir
�i1�i2 � � � � � �ik

=
X�

i1;:::;ik�1
�i1 � � � � � �ik�1

X
j =2fi1;:::;ik�1g

�j

=
X�

i1;:::;ik�1
�i1 � � � � � �ik�1

�
1� �i1 � : : :� �ik�1

�
= X

(k�1)
(1;:::;1) � (k � 1)X

(k�1)
(2;1;:::;1);

and computing the expectation, we can apply the induction hypothesis, giving

EX
(k)
(1;:::;1) = mk�2 � (k � 1) (k � 2)!

(k � 1)!m
k�2g (2;m)

= mk�2 �mk�2 (1�m) = mk�1:

For the special case k = 1; r1 = 2; we get

E
�X

i
�2i

�
= 1�m:

We can apply this to compute the expected overlaps in the REM in the N ! 1
limit: It is natural to de�ne the �overlap�between �; �0 to be 1 if � = �0; and 0 if � 6= �0:
Then under the Gibbs measure, we have the expected overlap to be

G
2!;�;N
���

�; �0
�
: � = �0

	�
=
X
�

[G!;�;N (�)]2 ;

and if we take the expectation over P; we get

EG
2!;�;N
���

�; �0
�
: � = �0

	�
= E

X
�

[G!;�;N (�)]2 :

Passing to the limit, we get

Proposition 3.14
a) If � <

p
2 log 2; then

lim
N!1

EG
2!;�;N
���

�; �0
�
: � = �0

	�
= 0:

b) If � >
p
2 log 2; then

lim
N!1

EG
2!;�;N
���

�; �0
�
: � = �0

	�
= E

�X
i
�2i

�
= 1�

p
2 log 2

�
;

where f��ig is a PD
�p

2 log 2
�

�
:
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3.3 The GREM and Ruelle�s cascades

Derrida evidently felt that the REM is too simple to shed any light on �real� spin
glasses. He therefore invented a modi�cation where the energies are correlated, like in
the SK-model, but in a very special hierarchical way.

I will not prove anything of substance about Derrida�s GREM, but I will quickly
go to the limiting object, the Ruelle cascades.9 I will however give a description of the
GREM and some of its properties.

Consider a tree with a root and K levels. On each level, a bond branches into 2N=K

�children�branches. The leaves � can then be written as

� = (i1; i2; : : : ; iK) ; 1 � ij � 2N=K :

The bonds of the graph can be identi�ed with the pre�xes (i1; : : : ; ij) of �; j � K: To
pass from the root to the leaf � on passes through the bonds

i1; (i1; i2) ; (i1; i2; i3) ; : : : ; (i1; i2; : : : ; iK) :

The energies of the GREM are given by summing independent bond energies along the
path from the root to the leaves.

X�
def
= X

(1)
i1
+X

(2)
i1;i2

+ � � �+X(K)
i1;:::;iK

:

All the X(j)-variables are assumed to be independent and centered Gaussians. On level
j � K; all variables have the same variances

var
�
X
(j)
i1;:::;ij

�
= �2jN:

Usually, one assumes that �21 > �22 > � � � > �2K ; but it is not really necessary. (If it is
not satis�ed, then some of the levels simply disappear in the limit). We also assume

KX
i=1

�2i = 1

which is just a normalization of no importance.
The covariances are trivially computed

E (X�X�0) = N

q(�;�0)X
i=1

�2i ;

where

q
�
(i1; : : : ; iK) ;

�
i01; : : : ; i

0
K

��
= max

�
m : (i1; : : : ; im) =

�
i01; : : : ; i

0
m

��
:

9Ruelle did not prove that Derrida�s GREM converges to the object he introduced, although he
seemed to have taken it as a kind of �evident�, not worth to bother.
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Particularly, the variance of the variables is N as in the REM case.
The partition function and the Gibbs measure are de�ned in the usual way:

ZN;�;!
def
=
X
�

exp [�X�] ; GN;�;! (�)
def
=

1

ZN;�;�
exp [�X�] :

The free energy

f (�)
def
= lim

N!1

1

N
logZN

can be computed explicitly. It is piecewise quadratic with K pieces of di¤erent second
derivative (provided �21 > �22 > � � � > �2K): The model has K critical values:

�cr1 =

p
2 log 2p
K�1

< �cr2 =

p
2 log 2p
K�2

< � � � < �crK =

p
2 log 2p
K�K

:

For � < �cr1 , one has that the free energy equals the annealed free energy. f (�) =
�2=2+ log 2: For � > �crK ; the free energy is linear in �: The second derivative of the free
energy in � jumps at all critical values, but the �rst derivative stays continuous.

For � < �crK there is no �macroscopic�Gibbs weight, i.e. the Gibbs weights are all
exponentially small. However, for � > �crn ; the marginalsX

in+1;:::;iK

G ((i1; : : : ; iK))

are macroscopic, and in the limit N ! 1 given by a Poisson-Dirichlet point process.
For �crn < � < �crn+1; the Gibbs distribution �freezes�at level n; but not at level n + 1;
meaning that the Gibbs measure concentrates at con�gurations (i1; : : : ; iK) for which
X1
i1
; : : : ; Xn

i1;:::;in
are near their maximal possible value, but not Xn+1

i1;:::;in+1
: I don�t give

any details about that, but now present Ruelle�s limiting object.
Ruelle argued that the limiting Gibbs measure (at least for � large) should have

the following cascade structure. One chooses K parameters 0 < m1 < � � � < mK <
1: Then, on a �rst level one chooses a PPP

�
m1t

�m1�1dt
�
; �1 =

�
�1i
	
i
; where (for

convenience) the points �0 > �1 > � � � > 0 are ordered downwards. On the next level,
one chooses for any i 2 N a PPP

�
m2t

�m2�1dt
�
�2i whose countably many points are

denoted by
n
�2ij

o
j2N

; and we furthermore assume that these point processes are all

independent, and also independent of �1: In this way, one proceeds: On the third level,

one chooses independent point processes �3i1i2
def
=
n
�3i1i2j

o
j
for any i1; i2 2 N; and these

point processes have density m3t
�m3�1:

Such a cascade of point processes �1;�2i1 ;�
3
i1i2

; : : : ;�Ki1i2:::iK�1 is called a Ruelle
cascade to the parameter (m1; : : : ;mK) :

We can multiply the points of the all the point processes: For i = (i1; : : : ; iK) 2 NK ;
we put

�i
def
= �1i1�

2
i1i2 � � � �

K
i1;i2;:::;iK

(3.8)
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This leads to the point process

�tot
def
= f�ig

One should think of the points of this point process as the unnormalized Gibbs weights
of a limiting GREM-type spin glass.

Occasionally, it is convenient, to write things additively, by de�ning

�ni1;:::;in = exp
�
�ni1;:::;in

�
; �i =

KX
m=1

�ni1;:::;in ; �i = e
�i :

Here, for any n � K; and any i1; : : : ; in�1; the point process
�
�ni1;:::;in

	
in
is a PPP

�
mne

�mntdt
�
:

The �rst big surprise is

Proposition 3.15
N
�
�tot

�
=L PD(mK) :

Proof. Take �rstK = 2: Remark that because ofm1 < m2 < 1 we have
R
(0;1) t

m2m1t
�m1�1dt <

1; and therefore
C
def
=
X
i

�
�1i
�m2 <1 (3.9)

almost surely. We can now apply Lemma 3.10. For that we condition on the �rst level�
�1i
	
; and apply the lemma with yi

def
= �1i ; m = m2; m

0 = 1: Then

N
��
�1i �

2
ij

	�
=L PD(m2) :

The general K case follows easily by induction. For instance with K = 3; one sees
from the identity (??) thatX

i;j

�
�1i �

2
ij=C

1=m2

�m3

<1; a:s:

i.e. X
i;j

�
�1i �

2
ij

�m3 <1; a:s:

and we can apply the same argument as above for the next level, conditioning �rst on
the �rst two levels.

It �rst sight, this proposition seems to tell that the introduction of the cascade
structure does not give anything new which is not already present in the case K = 1:
Nothing could be more wrong than that, as I explain now.

We can order the �i downwards which leads to a random bijection � : N! NK : ��(k)
is the k-th biggest among the �i:

Let 0 � k � K and �x it for the moment. We de�ne a (random) equivalence relation
on N by setting i � j if and only if � (i)r = � (j)r for r � k: In other words, i is equivalent
to j if and only if the branching between the i-th largest and the j-th largest is at level
k or later.
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The equivalence relation induces a partition Zk of N into disjoint subsets, the equiv-
alence classes under the equivalence relations. By the very de�nition, it is clear that
Zk+1 is a �ner partition than Zk: If Z and Z 0 are to partitionings of N we write Z 0 � Z
if Z is obtained by possibly dividing the sets of Z 0; i.e. if it is the �ner partitioning.
Using this notation, we evidently have

ZK = ffig : i 2 Ng � ZK�1 � � � � � Z1 � Z0 = fNg : (3.10)

The Ruelle cascade therefore leads to a sequence of random partitionings (Z0;Z1; : : : ;ZK) :
Of course only the Zk with 1 � k � K � 1 are random. A most remarkable property is

Proposition 3.16
N (f�ig) and (Z0;Z1; : : : ;ZK) are stochastically independent.

The crucial point is already seen in the case K = 2: We step back to the situation
of Lemma 3.10 and use the assumptions and notations from there, i.e. we start with a
sequence y = fykg of positive reals, and independent point processes

�
�ki
	
i
which are

PPP
�
at�a�1dt

�
: Then consider N

��
yk�

k
i

	
i;k

�
which we know is a PD(a) : As usual,

we can order the points of this point process downwards, and the two-stage procedure
to produce the points induces a random partitioning Z of the natural numbers. This
partitioning can be created in the following way: We attach to a point of the point-

process N
��
yk�

k
i

	
i;k

�
the number k if the point stems from the group yk�k� : In this

way, we obtain what is called a marked point process.
What we prove is that the marked point process is a point process with independently

attached marks. We need some information about marked point processes. Let M be a
(locally compact) space. A point process with values in R+ with marks in M is a point
process with values in R+�M which has the property that almost surely, one has for all
s 2 R+ there is at most one point in fsg�M: One also requires that the projection of the
points to R+ gives a point process on R+ (which is not automatic from the requirement
that one has a point process on R+ �M). On the other hand, there is no requirement
that the projection onto M leads to a point process on M:

A very special case is the one where independent marks are attached to a point
process on R+: We can construct that in the following way. Any point process � with
values in R+ can be represented as � =

P
i ��i ; where f�ig is a sequence of positive

random variables. For instance, if there is a largest point, as is usually the case of
interest to us, we can just arrange the points in decreasing order. The ordering of the
points is however of no importance for the construction. Given a probability distribution
� on M; we construct an i.i.d. sequence fXig of random variables, taking values in M;
and law �: Then we take as a point processX

i

�(�i;Xi):

The Laplace functional is easily computed: If � 2 C+o (R�M) and e� (y) = Ee��(y;X);
then

E exp
h
�
X

i
� (�i; Xi)

i
= E exp

h
�
X

i
 (�i)

i
:
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In the special case where f�ig is a PPP (fdt) then

E exp
h
�
X

i
� (�i; Xi)

i
= exp

�
�
Z �

1� e� (t)
�
f (t) dt

�
= exp

�
�
Z Z �

1� e��(t;x)
�
f (t) dt� (dx)

�
:

Lemma 3.17
In the situation described before

��
yk�

k
i =C (a)

1=a ; k
�
i;k

�
is a marked point process

where the �rst component is a PPP
�
at�a�1

�
; and the marks are independently attached

with y-dependent distribution

pa;y (k)
def
=

yak
C (a)

:

As a consequence, normalizing the point process
�
yk�

k
i

	
i;k
and keeping the marks leads

to a PD(a) with independently attached marks with the above distribution.

Proof. Let � : R+ � N! R+ be continuous with compact support. Then

E exp
h
�
X

i;j
�
�
yk�

k
i ; k
�i

=
Y

k
E exp

h
�
X

i
�
�
yk�

k
i ; k
�i

=
Y

k
exp

�
�
Z �

1� e��(ykt;k)
�
at�a�1dt

�
=

Y
k
exp

"
�
Z �

1� e��(t;k)
� a

yk

�
t

yk

��a�1
dt

#

= exp

�
�
X

k

Z �
1� e��(t;k)

�
pa;y (k)C (a;y) at

�a�1dt

�
;

which proves that, conditionally on the �rst level, the point processn�
yk�

k
iC (a;y)

1=a ; k
�o

k;i

is a marked point process which is a PPP
�
at�a�1dt

�
with independently attached points

in N with law pa;y:
We will also need:

Lemma 3.18
a) If f�igi is a PPP

�
at�a�1dt

�
; and 0 < a < b < 1; then

�
�bi
	
i
is a PPP

�
a
b t
�a=b�1dt

�
b) Let �1i1 ; : : : ; �

K
ii;:::;iK

be a Ruelle cascade with parameters m1 < � � � < mK < 1; and
let mK < m < 1: Then

N
�n�

�1i1 � : : : � �
K
ii;:::;iK

�mo
i

�
is a PD(mK=m) which is independent of �

�
�1; : : : ; �K�1

�
:
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Proof. a) Apply Lemma 1.9. With in�nitesimal intervals:

P
�
9i : �bi 2 [t; t+ h]

�
= P

�
9i :

h
t1=b; (t+ h)1=b

i�
= P

�
9i :

h
t1=b; t1=b + b�1t1=b�1h

i�
= hb�1t1=b�1

�
a
�
t1=b
��a�1�

= h
a

b
ta=b�1:

b) We have that

C
�
�1; : : : ; �K�1;mK

� def
=

X
i1;:::;iK�1

�
�1i1 � : : : � �

K�1
ii;:::;iK�1

�mK

<1

almost surely. (This follows easily by induction on K: We already use it above). We
condition on the �rst K � 1 levels. Thenn

�1i1 � : : : � �
K
ii;:::;iK

=C
�
�1; : : : ; �K�1;mK

�1=mK
o
i

is a PPP
�
mKt

�mK�1
�
; and thereforenh

�1i1 � : : : � �
K
ii;:::;iK

=C
�
�1; : : : ; �K�1;mK

�1=mK
imo

i

is a PPP
�
mK
m t�mK=m�1

�
: So the conditional distribution ofN

�n�
�1i1 � : : : � �

K
ii;:::;iK

�mo
i

�
is PD(mK=m) : As this conditional distribution does not depend on �1; : : : ; �K�1; the
statement follows.

Proof of Proposition 3.16. As remarked above, we prove it (for the moment)
only for K = 2: From the lemma above we see that conditionally on the �rst level�
�1i1
	
i1
; the clustering is through marks, independently attached to the point process

� = N
��
�1i1�

2
i1i2

	�
: The law of the latter does not depend on the realization of �1;

however the distribution of the marks does. Therefore, the clustering is stochastically
independent of �; and is obtained through a two-stage procedure: Depending on �1; one
computes a probability law on N through�

pm2;�1 (i)
	
i2N

and chosen conditionally independent marks, given �1; the marks attached to the point
process �: The matching is performed by matching points with the same marks. The
total distribution of the matching is obtained by choosing �1 according to its law.

Remark 3.19
For later use, it is important to carefully spell out the mechanism of the matching
procedure. Conditionally on the �rst level �1; both, the point process� and the matching
depend on the point process �2; and are stochastically independent, conditionally on
�1: The point process � is however independent of �1; whereas the matching is not.
Nevertheless, this implies that � and the matching are also unconditionally independent.

The point process
�
pm2;�1 (i)

	
i2N itself is obtained through normalizing

��
�1i
�m2
	
;

i.e. it is a PD(m2=m1) according to Lemma 3.18.
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3.4 The coalescent process

The aim of this section is to give further information about the structure of the distri-
bution of (Z0;Z1; : : : ;ZK) : For that, we de�ne a continuous time , time homogeneous,
Markov process f�tgt�0 taking values in the set of partitionings of N (or equivalently, in
the set of equivalence relations). We write �N for the set of equivalence relations on N:
The set of equivalence relations is a subset of the set of all relations on N: The latter is
evidently a compact set, as it can be presented as f0; 1gP(N) ; where P (N) denotes the
set of (unordered) pairs of N:. It is readily checked that �N is a closed subset of the set
of relations, and therefore, it is compact as well.

If I is a �nite subset of N; then we write �I for the set of equivalence relations on
I: This is a �nite set. We write �N;I for the natural projection �N ! �I ; and more
generally, if I � J � N; we write �J;I for the projection �J ! �I :

We construct the process f�tg via its projections �t;I
def
= �N;I (�t) for I �� N: f�t;Ig

itself is a Markov process which is not automatic from the Markov property of f�tg ; of
course. Anyway, f�t;Ig being a continuous time Markov process on the �nite set �I ; it
is perfectly described by its transition matrix Rt;I (; 0) ; ; 0 2 �I ; which then can be
written as

Rt;I = exp [tQI ] ;

with the Q-matrix QI (; 0) ; satisfyingX
0

Q
�
; 0

�
= 0; 8;

Q
�
; 0

�
� 0; 8 6= 0:

Here it is: Transitions are possible only to coarser partitionings, i.e. from  to a
0 � : Therefore, if  has just one class, then no transitions are possible, and this is
absorbing. This means that QI (; 0) = 0 if jj = 1: jj here the number of classes in :
If jj = N � 2; and if 0 is obtained from  by clumping together exactly k � 2 classes,
then

QI
�
; 0

� def
=

1

(N � 1)
�
N�2
k�2
� :

All other QI (; 0) with 0 6=  are 0: So, in�nitesimally, only one clumping act is
possible, but the number of clumped sets is not restricted. Furthermore, of course,

QI (; ) = �
X

0:0 6=
QI
�
; 0

�
:

This de�nes in the standard way a Markov process f�t;Igt�0 :

Exercise 3.20
The transitions of the Markov process f�t;Ig ; I �� N; are given in the following way.
Conditioned on f�t;I = g ; the process stays in  for an exponential time with expec-
tation (jj � 1)�1 : (Of course, if jj = 1; then the process stays there forever). At the
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jump time, � 2 f2; : : : ; jjg classes are clumped with

P (� = k) =
jj

jj � 1
1

k (k � 1) :

Conditioned on f� = kg ; the k classes to be clumped together in one new class are chosen
with equal probability among the

�
N
k

�
possibilities.

With probability one, the process reaches the absorbing one-class state after a �nite
time.

Somewhat surprisingly, the transition kernel Rt;I for I �nite, can be computed ex-
plicitly:

Proposition 3.21
Assume  2 �I has N classes, and 0 is obtained by clumping r1; r2; : : : ; rk � 1 classes
of ; with

P
i ri = N: Then

Rt;I
�
; 0

�
=
(k � 1)!
(N � 1)!e

�(k�1)t
kY
i=1

g
�
rj ; e

�t� ; (3.11)

where g (r;m) is de�ned in (3.7).

Proof. We write qt (; 0) for the right-hand side of (3.11). Evidently, q0 is the
identity matrix. We prove

dqt
dt
= Qqt:

From that, the claim follows.
We write x = e�t; fx (s) = sx; s > 0: Then

qt
�
; 0

�
= (�1)N�k (k � 1)!

(N � 1)!

kY
i=1

f (ri)x (1) ;

where f (m) denotes the m-th derivative w.r.t s:
For m � 1; one has

@f
(m)
x (1)

@t
=

@m

@sm
(�x log s) fx (s)

����
s=1

= x
mX
j=1

(�1)j
�
m

j

�
(j � 1)!f (m�j)x (1) :

The functions fx (s) satisfy the identity

xf (r)x (1) = f (r+1)x (1) + rf (r)x (1) ;
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and implementing that, we get

@f
(m)
x (1)

@t
= m!

mX
j=2

(�1)j�1 f
(m�j+1)
x (1)

j (j � 1) (m� j)! �mf
(m)
x (1) ;

where the sum over j is 0 in case m = 1:
Let now ; 0 be as in the statement of the proposition. Then

dqt (; 
0)

dt
= (�N + 1) qt

�
; 0

�
+(�1)N�k (k � 1)!

(N � 1)!

�
X
i:mi�2

miX
r=2

(�1)r�1 mi!f
(mi�r+1)
x (1)

(mi � r)!r (r � 1)x
Y
j:j 6=i

f
(mj)
x (1)

= (�N + 1) qt
�
; 0

�
+
X
i:mi�2

miX
r=2

1

(N � 1)
�
N�2
r�2
��mi

r

�
(�1)N�k�r+1

� (k � 1)!
(N � r)!

1

x
f (mi�r+1)
x (1)

Y
j:j 6=i

f
(mj)
x (1)

=
X

00:0�00�
Q
�
; 00

�
qt
�
00; 0

�
:

This proves the claim.
We next claim that the Markov processes on �I ; I �� N; are compatible, meaning

that if I � J; then the Markov process constructed with values in �J ; projected onto
�I is the Markov process with this state space. This is proved by checking that the
Q-matrices have the appropriate compatibility property, namely

Lemma 3.22
Let ; 0 2 �I ; 0 � ; and ~ be any element in �J with �J;I (~) = : Then

QI
�
; 0

�
=

X
~02�J :~0�~;
�J;I(~

0)=0

QJ
�
~; ~0

�
:

Proof. We only have to check the formula when 0 is obtained from  by clumping k
classes,  having N � k classes, k � 2: The chosen ~ may have N classes, too, or more.
Say, it has ~N � N classes. Now, in order to get by a simple clumping a partitioning
~0 which when restricted to I equals 0; one has several possibilities, but certainly, the
extensions of the classes clumped in  have to be clumped. Of the ~N �N new classes
in ~; the clumping of them has no in�uence on the trace on I: Therefore, if we decide
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to clump l � ~N �N of them, there are simply
� ~N�N

l

�
to select this group which should

be clumped, and in this case, we have

QJ
�
~; ~0

�
=

1�
~N � 1

� � ~N�2
k+l�2

� :
Therefore, all we have to check is

1

(N � 1)
�
N�2
k�2
� = ~N�NX

l=0

� ~N �N
l

�
1�

~N � 1
� � ~N�2

k+l�2
�

which is elementary.
As a consequence, one obtains the compatibility of the semigroups Rt;I ; namely that

if I � J; and ~ 2 �J ; then

Rt;I (�J;I (~) ; �) = Rt;J

�
~; ��1J;I (�)

�
: (3.12)

and then, by soft arguments, one can extend the semigroup to a Feller semigroup fRtg
on �N; satisfying

Rt;I (�N;I (~) ; �) = Rt

�
~; ��1N;I (�)

�
(3.13)

for any I �� N; ~ 2 �N: This leads to a Feller process f�tgt�0 taking values in �N which
we start with the trivial partitioning of N into single points. This process is characterized
by the property that its projections to �I ; I �� N; are Markov with the semigroup Rt;I :

Exercise 3.23
Prove that for any t > 0; �t has in�nitely many countably in�nite classes, and no �nite
classes, almost surely. In particular, �t is non-trivial for any t > 0:

Our next task is to relate the above semigroup to the clusterings coming from the
Ruelle cascades.

To do that, we describe the semigroup in a di¤erent way.
Assume that  is a partitioning of N,  = fC1; C2; : : :g ; and let t > 0:We �rst choose

a PD
�
e�t
�
; leading to a random probability distribution �� = f��igi2N : Conditioned on

this realization of the Poisson-Dirichlet process, we choose for every Ck independent
random numbers Yk where

P (Yk = jj ��) = ��j :

Then we cluster the sets with the same number. This constructs a random partitioning
0 � : The corresponding kernel is denoted by St; i.e. St (; �) is the distribution of the
above constructed random 0:

Lemma 3.24

St = Rt; 8t � 0:
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Proof. For any �nite I �� N; we can de�ne kernels St;I in an evident way by
restricting the above random matching mechanism to �nitely many classes. By the very
construction, one has (3.13) satis�ed for the kernels St; St;I : It therefore su¢ ces to prove
St;I = Rt;I for all �nite I:

Let  2 �I haveN classes, and 0 be obtained by clumping r1; : : : ; rk classes together,P
ri = N: Then, conditioned on ��; the probability that under St;I one has this clumping

is X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik ;

and so
St;I

�
; 0

�
= E

X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik ;

the expectation with respect to the Poisson-Dirichlet process. This quantity, we have
computed in Proposition 3.13:

E
X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik =

(k � 1)!
(N � 1)!e

�t(k�1)
kY
i=1

g
�
ri; e

�t� ;
where g (r;m) is from (3.7). This is exactly the expression, we obtained Proposition 3.21
for St;I (; 0) :

We are now in the position to identify the law of the Ruelle-clustering in terms of
the coalescent process:

We take as before 0 < m1 < � � � < mK < 1; and de�ne the clustering Zj ; 0 � j � K;
by (3.10).

Theorem 3.25
The law of (ZK ;ZK�1; : : : ;Z1) is the same as that of

�
�0;�t1 ; : : : ;�tK�1

�
with

e�ti =
mK�i
mK

:

Proof. We �rst check the caseK = 2 where there is only one non-trivial partitioning,
namely Z1; and where we have already done the computation in the proof of Proposition
3.16. There we have proved that Z1 is obtained by attaching marks to N coming from
a PD

�
m1
m2

�
; and identifying points with the same marks. (See Remark 3.19). So this is

exactly the procedure we have for the kernel St1 with e
�t1 = m1

m2
:

For the general K � 2 case, the same argument together with Lemma 3.18 shows
that ZK�1 is obtained from the trivial (i.e. non-)clustering ZK by applying the kernel
St1 with e

�t1 = mK�1=mK : Now, the way ZK�2 is obtained from ZK�1 is again simply
by setting marks to the points of the (K � 1)-st level, coming from the (K � 2)-nd level,
and matching points (i.e. clusters of the �nite point process) which have the same marks.
This transition is done via the kernel St2 where t2 = mK�2=mK�1: There is however one
di¢ culty: One has to check that the new clustering is not in�uenced (stochastically) by
the �rst clustering.
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For that, remember that ZK�1 is obtained through a two-stage procedure: One
chooses the marks conditionally independent, according to a probability distribution
which is computed from �1; : : : ; �K�1 trough

p(K�1) (i1; : : : ; iK�1) =

�
�1i1�

2
i1;i2

� � � �K�1i1;:::;iK�1

�mK

normalization
:

This is a PD(mK�1=mK) which is independent of of �1; : : : ; �K�2: Now, the clustering
from ZK�1 to ZK�2 is obtained again through conditionally independent marks, the
distribution of the marks being given by

p(K�2) (i1; : : : ; iK�2) =

�
�1i1�

2
i1;i2

� � � �K�2i1;:::;iK�2

�mK�2

normalization

which is a PD(mK�2=mK�1) ; depends on �K�2; of course, but is independent of �1; : : : ; �K�3:
Therefore, the clustering procedure from ZK�1 to ZK�2 is independent of the clustering
procedure from ZK to ZK�1 : One just takes the clusters, puts the marks according to
p(K�2) which itself is a PD(mK�2=mK�1) ; so that the transition is simply by St2 : Then
again, this clustering is independent of �1; : : : ; �K�3; and one proceeds in this way.

4 Guerra�s replica symmetry breaking bound: The Aizen-
man-Sims-Starr proof

4.1 The Aizenman-Sims-Starr random overlap structures
De�nition 4.1
A random overlap structure R (ROSt for short) consists of a �nite or countable set
A; a probability space (�;G;P) ; and random variables �� � 0; q�;�0 ; �; �0 2 A; satisfying
the following properties

1.
P

� �� <1

2.
�
q�;�0

�
is positive de�nite and satis�es q�;� = 1:

The �� play the rôle of (unnormalized) Gibbs weights, and the q�s are the abstract
overlaps.

Example 4.2
As an example take A = �N

def
= f�1; 1gN . For ��; � 2 �N ; we take

��
def
= exp

24 �p
N

X
1�i<j�N

gij�i�j + h

NX
i=1

�i

35 :
For q�;�0 we take the standard overlap RN (�; �0) ; as introduced before. We write RSKN
for this overlap structure. The q here are nonrandom. On the other hand, we can use a
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(random) reordering of the set A by ordering the �� downwards: �1 > �2 > : : : > �2N :
After this random reordering, the q become random: q1;2 for instance is the overlap of
the two indices with the largest �-weight.

Example 4.3
Another overlap structure is de�ned by Ruelle�s probability cascades introduced in the
last section. Fix 0 = m0 < m1 < : : : < mK = 1: We take A = NK ; and the � are the
(unnormalized) weights �i as in the last section with mi; 1 � i � K, see (3.8). There
is a slight problem because we have to take the last parameter mK = 1; which implies
that

P
i �i =1: This will not cause any di¢ culties for what we do below. The overlaps

are de�ned in the following way. Fix a sequence 0 � q (1) < q (2) < : : : < q (K) <
q (K + 1) = 1; and we set

qi;i0 = q
�
max

�
k : (i1; : : : ; ik) =

�
i01; : : : ; i

0
k

�	
+ 1
�
;

i.e. we measure the hierarchical distance on the tree, and weight it with the function q:
For this random overlap structure, we write RRuelleK :

Given any ROSt, we attach to it families of Gaussian random variables (y�;i)�2A; i2N ;
(��)�2A by requiring

E (����0) = q2�;�0 ; (4.1)

and the �cavity �eld�by
E
�
y�;jy�0;j0

�
= q�;�0�j;j0 : (4.2)

The � and the y are independent. In case, the q�s itself are random variables, these are
just the conditional distributions, given (�; q) : It is not di¢ cult to see that such random
variables exist. By an extension of the probability space, we can assume that all the
random variables are de�ned on a single probability space.

For later use, we give the construction of the cavity variables for RRuelleK : We simply
write

yi =
p
q (1)g(0) +

KX
k=1

p
q (k + 1)� q (k)g(k)i1;:::;ik ; (4.3)

where the g�s are independent standard Gaussians: Furthermore, the yi;j ; j 2 N; are
independent copies of yi: The �i are constructed in a similar way.

The above notion of a ROSt needs some explanation. The basic idea comes from
what in the physics literature is called the �cavity method�. We consider the standard
SK-Hamiltonian, but now with N +M spins, where one should think of N being much
larger than M: We then try to write the Hamiltonian in terms of the Hamiltonian on N
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spin variables acting on the M �newcomers�. We write � i = �N+i for the newcomers.

�p
N +M

X
1�i<j�N+M

gij�i�j + h
N+MX
i=1

�i

=

p
Np

N +M

�p
N

X
1�i<j�N

gij�i�j + h
NX
i=1

�i +
�p

N +M

NX
i=1

0@ MX
j=1

gi;N+j�i

1A � j

+
�p

N +M

X
1�i<j�M

gN+i;N+j� i� j + h
MX
j=1

� j :

We neglect parts which are stochastically o (1) forN !1; M �xed. In particular, we
can neglect the interaction among the newcomers, i.e. we can drop the fourth summand
on the right hand side above. Furthermore, we may as well replace

p
N +M by

p
N in

the third summand. De�ning the cavity variables

y�;j
def
=

1p
N

MX
j=1

gi;N+j�i;

we see that they have exactly the right distribution as required in (4.2), with respect to
the random overlap structure RSKN coming from the N system. In the �rst summand,

we have to be more careful: Put U (�) def=
P
1�i<j�N gij�i�j : Then by (2.2)

E
�

U (�)p
N +M

U (�0)p
N +M

�
=

N

(N +M)
E
�
U (�)p
N

U (�0)p
N

�
=

N

(N +M)

�
N

2
RN

�
�; �0

�2 � 1
2

�
� E

�
U (�)p
N

U (�0)p
N

�
� M

2
q2�;�0

taking here the SK-ROSt with q�;�0 = RN (�; �
0) : Therefore,�

U (�)p
N

�
�2�N

�L
(

U (�)p
N +M

+

r
M

2
��

)
�2�N

;

up to an error which disappears in the N !1 limit, M �xed.
If we set

��
def
= exp

24 �p
N +M

X
i<j�N

gij�i�j + h

NX
i=1

�i

35 ;
we see that

ZN+N =
X

�2�N ; �2�M
�� exp

�XM

i=1
(�y�;i + h) � i

�
;

ZN �
X

�2�N
�� exp

h
�
p
M=2��

i
;
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and therefore

ZN+M
ZN

�

P
�2�N ; �2�M �� exp

hPM
i=1 (�y�;i + h) � i

i
P

�2�N �� exp
h
�
p
M=2��

i : (4.4)

Here we have used the ROSt from the N -spin SK model (with Gibbs weights coming
from a slightly changed temperature parameter). Aizenman, Sims and Starr had the
idea to consider the above object when the N system is replaced by an arbitrary ROSt
R; and they consider the �relative �nite M free energy�in the following way

GM (�; h;R)
def
=

1

M
E

0@logP�;�2�M �� exp
hPN

i=1 (�y�;i + h) � i

i
P

� �� exp
h
�
p
M=2��

i
1A ; (4.5)

where the E expectation is taken with respect both to the law of the random overlap
structure and the cavity variables y�;i and ��: The idea is that when taking R = RSKN ;
one has, up to a negligible correction,

GM
�
�; h;RSKN

�
=
1

M
logZN+M � 1

M
logZN ;

which should satisfy

lim
M!1

lim
N!1

GM
�
�; h;RSKN

�
= f (�; h) :

This is in fact correct, as we will see below, but is not very interesting, as one does
not see why GM

�
�; h;RSKN

�
should be easier to compute than fN = N�1E logZN : The

real issue is the following variant of Guerra�s theorem:

Theorem 4.4 (Guerra, Aizenman-Sims-Starr)
For any M , and any random overlap structure R one has

fM (�; h)
def
=

1

M
E logZM � GM (�; h;R) ; (4.6)

ZM here being the SK-partition function.

Proof. To a large extent it is a rerun of the computation done in Section 2.3.2. One
uses the following interpolation:

�HM (� ; �; t)
def
=

p
1� tp
M

X
1�i<j�M

gij� i� j +

r
M (1� t)

2
�� +

p
t
XM

i=1
y�;i� i

and de�nes

ĜM (�; h; t;R) = def 1

M
E
�
log
X

�2A; �2�M
�� exp

h
��HM (� ; �; t) + h

X
i
� i

i�
(4.7)

� 1

M
E
�
log
X

�2A
�� exp

h
�
p
M=2��

i�
:
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where E is taken with respect to the overlap structure, i.e. the y�s and the ��s, and the
g�s (which are supposed to be independent). For t = 0; the �-part cancels, and one just
gets fM (�; h) : For t = 1; one gets GM (�; h;R) :

We write Gt for the Gibbs distribution on A��M given by the unnormalized weights

u (�; �)
def
= �� exp

h
��HM (� ; �; t) + h

X
i
� i

i
;

i.e. Gt (�; �)
def
= u (�; �) =Z; with Z def

=
P

�;� u (�; �) : Then we write �
(k) for the expecta-

tion under P 
 G
kt ; where P is the probability law, governing the cavity variables y�;i;
the ��s, the g�s, and the q�s, if they are random. Remark however, that the g�s and the
rest are independent, and conditionally on the q�s, the y�s and the ��s are independent.

We compute the t-derivative of ĜM : Remark that the denominator on the right hand
side does not depend on t; so it does not appear. We therefore get

dĜ

dt
=

�

M
�
(1)
t

�
d (�HM )

dt

�
=

�

M
E
�X

�;�

d (�HM (�; �))

dt

u (�; �)

Z

�

�dHM (� ; �; t)

dt
= � 1

2
p
M
p
1� t

X
1�i<j�M

gij� i� j �
r
M

2

1

2
p
1� t

��

+
1

2
p
t

MX
i=1

y�;i� i;

so we get
dĜ

dt
= �S1 � S2 + S3; say:

We use Gaussian partial integration

E
�
gij
u (�; �)

Z

�
= E

�
Z�1

@u (�; �)

@gij

�
� E

�
Z�2u (�; �)

@Z

@gij

�
= E

�
u (�; �)

Z

�
p
1� tp
M

� i� j

�
�E

�
u (�; �)

Z2

X
�0;� 0

u
�
�0; � 0

� �p1� tp
M

� 0i�
0
j

�
:

So

S1 =
�2 (M � 1)

4M
� �2

2M2

X
�;�

X
1�i<j�M

� i� j
u (�; �)

Z2

X
�0;� 0

u
�
�0; � 0

�
� 0i�

0
j

=
�2

4

h
1� �(2)t

�
RM

�
� ; � 0

�2�i
:
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Here we stress a bit the notation. �(2)t is a probability measure on (A� �M )2 :When we
write �(2)t

�
RM (� ; �

0)2
�
; we mean in fact that we sum RM (� ; �

0)2 over ((�; �) ; (�0; � 0)) ;

weighted with the probabilities from �
(2)
t :

We do the same type of computation for S2; but here we have to use Gaussian partial
integration for correlated Gaussians, i.e. the Wick Theorem 1.2.

E
�
��
u (�; �)

Z

�
= E

�
Z�1q (�; �)2

@u (�; �)

@��

�
� E

�
Z�2u (�; �)

@Z

@��

�
= �E

 
u (�; �)

Z

r
M (1� t)

2

!

�E
�
Z�2u (�; �)

X
�0:� 0

q
�
�; �0

�2 u (�0; � 0)
@��0

�
= �E

 
u (�; �)

Z

r
M (1� t)

2

!

�E
 
Z�2u (�; �)

X
�0:� 0

u
�
�0; � 0

�
q
�
�; �0

�2
�

r
M (1� t)

2

!

Therefore

S2 =
�

M

r
M

2

1

2
p
1� t

X
�;�

E
�
��
u (�; �)

Z

�

=
�2

4

X
�;�

E
��

u (�; �)

Z

�
�
�
Z�2u (�; �)

X
�0:� 0

u
�
�0; � 0

�
q
�
�; �0

�2��

=
�2

4

h
1� �(2)t

�
q
�
�; �0

�2�i
:

The same type of computation leads to

S3 =
�2

2

h
1� �(2)t

�
RM

�
� ; � 0

�
q
�
�; �0

��i
;

and therefore

�S1 � S2 + S3 =
�2

4
�
(2)
t

��
RM

�
� ; � 0

�
� q

�
�; �0

��2� � 0:
So, we get

dĜM (�; h; t;R)
dt

� 0; (4.8)

and therefore,

GM (�; h;R) = ĜM (�; h; 1;R) � ĜM (�; h; 0;R) = fM (�; h)
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which immediately implies the theorem.
The theorem gives upper bounds for fM (�; h) by choosing any random overlap struc-

ture. Of course, the �correct�choice would be to pick the ROSt from SK, but then, one
cannot do any computation. The really interesting bound comes from taking the Ruelle
ROSt which gives the Parisi expression as an upper bound.

It is actually not di¢ cult to see that one gets a full variational formula by optimizing
over all ROSt�s:

Theorem 4.5

f (�; h) = lim
M!1

inf
R
GM (�; h;R) :

The result is not very useful as one cannot perform the in�mum over all ROSt�s.
Proof. The proof is by a simple application of the Guerra-Toninelli superadditivity

result of Section 2.2. Let �N
def
= NfN (�; h) : The Guerra-Toninelli result was

�N+M � �N + �M :

This easily implies

f (�; h) = lim
N!1

�N
N

= lim
M!1

lim inf
N!1

�N+M � �N
M

= lim
M!1

lim inf
N!1

1

M
E
�
log

ZN+M
ZN

�
:

The discussion previous to (4.4) implies that for any M

lim inf
N!1

1

M
E
�
log

ZN+M
ZN

�
= lim inf

N!1
ĜM

�
�; h;RSKN

�
� inf

R
ĜM (�; h;R) :

Therefore, the claim follows.

4.2 Guerra�s replica symmetry breaking bound

We �rst have to explain the Parisi formula for the SK-model:
Let K 2 N (the number of symmetry breakings), and then we choose parameters

0 = m0 < m1 < : : : < mK�1 < mK = 1; (4.9)

0 = q0 � q1 < : : : < qK < qK+1 = 1: (4.10)

For i = 0; : : : ;K let gi be Gaussian with variance �2 (qi+1 � qi), and set YK+1
def
=

cosh
�
h+

PK
i=0 gi

�
: Then one de�nes

YK
def
=
�
EK

�
Y mK
K+1

��1=mK = EK (YK+1) : (4.11)
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where EK means that one integrates out gK ; so that YK still depends on g0; : : : ; gK�1:
Then one de�nes

YK�1
def
=
�
EK�1

�
Y
mK�1
K

��1=mK�1

and so on, until one gets Y1: Y1 is still a random variable as it depends on g0: Remark
however, that in case q1 = 0 which we don�t exclude, there is no randomness left. In any
case, we set

PK (m; q;�; h)
def
= E log Y1 �

�2

4

KX
i=1

mi

�
q2i+1 � q2i

�
+ log 2: (4.12)

Theorem 4.6 (Parisi, Guerra, Talagrand)
For the SK-model free energy f (�; h) one has

f (�; h) = inf
K;m;q

PK (m; q;�; h) = lim
K!1

inf
m;q
PK (m; q;�; h) :

I cannot give a proof of this here, and I restrict to prove the spectacular one-sided
bound by Guerra which is based on the following computation.

Lemma 4.7
We take RRuelleK as the ROSt from Example 4.3. Then

ĜM (�; h;R) = Ĝ1 (�; h;R) = PK (m; q;�; h) : (4.13)

Proof. We handle the two parts in (4.5) separately. We take M = 1: It will be clear
after the computation that for general M the outcome will be the same. We use the
representation of the cavity variables (4.3):

1

2

X
i;�2�1

�i exp [(�yi + h)�] =
X
i

�i cosh (�yi + h)

=
X

(i1;:::;iK)

�1i1�
2
i1i2 � � � � � �

K
i1i2:::iK

� cosh
 
�
p
q (1)g(0) +

KX
k=1

p
q (k + 1)� q (k)g(k)i1;:::;ik + h

!
:

We condition on �1i1 ; �
2
i1i2

; : : : ; �K�1i1i2:::iK�1
and g(0); : : : ; g(K�1): Then

�
�Ki1i2:::iK

�
iK2N

is a

PPP
�
t! mKt

�mK�1
�
whose points are multiplied by the independent random vari-

ables
�
cosh

�
�
PK

n=0 g
(n)
i1;:::;in

+ h
��

iK
:We know that the conditional law (conditioned

on anything up to level K � 1) of(
�Ki1i2:::iK cosh

 
�

KX
n=0

g
(n)
i1;:::;in

+ h

!)
iK
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is the same as that of �
��Ki1;:::;iK

	
iK

where

��Ki1;:::;iK
def
= CK

�
�
XK�1

n=0
g
(n)
i1;:::;in

�
�Ki1i2:::iK ;

and
CK (�)

def
=
�
EZ cosh

mK
�
� + h+ �

p
qK+1 � qKZ

��1=mK ; � 2 R;

Z being a standard Gaussian random variable, and EZ the expectation with respect to
Z: CK is a random variable which still depends on the g(n) up to n = K�1: So, we have

f�i cosh (�yi + h)gi =
L �1i1�

2
i1i2 � � � �

K�1
i1;:::;iK�1

CK

�
�
XK�1

n=0
g
(n)
i1;:::;in

�
�Ki1;:::;iK :

Now, the law of the point process�
�K�1i1;:::;iK�1

CK

�
�
XK�1

n=0
g
(n)
i1;:::;in

��
iK�1

by the same reasoning, is the same is that of�
CK�1

�
�
XK�2

n=0
g
(n)
i1;:::;in

�
�K�1i1i2:::iK�1

�
iK�1

where
CK�1 (�) =

�
EZC

mK�1
K

�
� + h+ �

p
qK+1 � qKZ

��1=mK�1 ;

and therefore,

f�i cosh (�yi + h)gi =
L �1i1�

2
i1i2 � � � �

K�2
i1;:::;iK�2

CK�1

�
�
XK�2

n=0
g
(n)
i1;:::;in

�
�K�1i1;:::;iK�1

�Ki1;:::;iK :

In this way, one proceeds, and arrives at

f�i cosh (�yi + h)gi =
L fE log Y1�igi ;

where E log Y1 is the constant from (4.12).
The second part in (4.5) is simpler because there one has in every step just an

integration of a Gaussian in the exponent. We therefore see that multiplying the
points �i by exp

��
�=
p
2
�
�i
�
simply leads to a multiplication of the point process by

exp
h�
�2=4

�PK
i=0mi

�
q2i+1 � q2i

�i
:

In the de�nition of G1 (4.5), we would now like to argue that
P
i �i cancels out.

There is the slight di¢ culty that this sum diverges almost surely, because of mK = 1;
but we can choose mK slightly less than 1; in which case the sum is �nite, and so cancels,
and then we can let mK ! 1 in the end.
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The upshot of this computation is that

G1 (�; h;R) = E log Y1 �
�2

4

KX
i=0

mi

�
q2i+1 � q2i

�
+ log 2

= PK (m; q;�; h) ;

the log 2 is coming from dividing by 2 in (??). It is fairly evident from this computation
that we get the same for arbitrary M: (One is just having M factors of cosh (�) with
independent contents, so in every step of the above argument, the factoring remains).

Combining this result with Theorem 4.4, one gets Guerra�s result:

Theorem 4.8 (Guerra)

fM (�; h) � PK (m; q;�; h)

for any K; and any sequence m and q: Therefore

fM (�; h) � inf
K;m;q

PK (m; q;�; h) :
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