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We review the notion of conformal isomorphism of complex domains and the question
of existence and uniqueness of conformal isomorphisms between proper simply connected
complex domains. Then we illustrate, by a simple special case, Loewner’s idea of encoding
the evolution of complex domains using a differential equation.

1.1 Conformal isomorphisms

A (complex) domain is a non-empty connected open subset of the complex plane C. A
holomorphic function f on a domain D is a conformal map on D if its derivative f’ vanishes
nowhere. If a conformal map f on D is injective, then it can be shown that its image
D' = f(D) is also a domain and its inverse f~': D' — D is also a conformal map. We call
a bijective conformal map f : D — D' a conformal isomorphism. A domain is proper if it
is not the whole of C. Write D for the open disc having centre 0 and radius 1. We note
the following fundamental result.

Theorem 1.1 (Riemann mapping theorem). Let D be a proper simply connected do-
main. Then there exists a conformal isomorphism ® : D — D.

1.2 Mobius transformations

For § € [0, 27), the rotation map z + €z is a conformal automorphism of D fixing (the
interior point) 0. For o € (0,00) and b € R, the scaling and translation maps z — oz and
z +— z + b are conformal automorphisms of the upper half-plane H fixing (the boundary
point) co. The map z — V¥(z) =i(1+2)/(1 - 2) : D — H is a conformal isomorphism. By
taking compositions of these maps we obtain the Mobius group of conformal automorphisms
of D, each element of which has the form

Dy u(z) =¢ 2€D

1—wz’
for some 6 € [0,27) and w € D. Note that every Mobius transformation extends to a
homeomorphism of the closed unit disc D.

The Mobius group has three real parameters. We now discuss three different ways
in which a Mobius transformation ® may be specified uniquely by three real constraints.
First, the constraints ®(w) = 0 and ®'(w) > 0 are satisfied uniquely by ®¢,. Then, given
a boundary point b of D, we can choose 6 so that e?®,,,(b) = 1 and then the constraints
®(w) = 0 and ®(b) = 1 are satisfied uniquely by ®4,. Finally, given any three distinct
boundary points by, by, b3 of D, ordered anticlockwise, we can rotate to put b; at 1, then
apply ¥ to map to H, then scale and translate to send ¥(bs) to —1 = U(i) and W(b3)
to 0 = ¥(—1) while fixing oo = ¥(1), and finally map back to D by U~!. The resulting
Mobius transformation takes by, be, b3 to 1, i, —1 respectively and is the only one to do so.

The following is a basic result of complex analysis. We shall give a proof using Brownian
motion in the next section.



Lemma 1.2 (Schwarz lemma). Let f : D — D be a holomorphic function with f(0) = 0.
Then | f(2)| < |2| for all z. Moreover, if |f(2)| = |z| for some z # 0, then f(w) = e®w for
all w, for some 6 € R.

Corollary 1.3. The Mdbius transformations are the only conformal automorphisms of D.

Proof. Let ® be a conformal automorphism of D. Set w = ®~!(0). Then f = ® o ®; . is a
conformal automorphism of D and f(0) = 0. Pick v € D\ {0} and set v = f(u). Note that
v # 0. Now, either |f(u)| = |v| = |u| or |f~!(v)| = |u| = |v|. In any case, by the Schwarz
lemma, there exists § € R such that f(z) = €z for all 2, and so ® = f o ®,, = By,,. O

1.3 Boundary points

Let D be a proper simply connected domain. We shall be interested in the ‘boundary of
D seen from inside D’. This is not simply the set of limit points of D in C\ D, and indeed
sometimes may not even be identified with a subset of C. Choose a conformal isomorphism
®: D — D. We say that a sequence (z,, : n € N) in D is D-Cauchy if (®(z,) : n € N) is
Cauchy in D. Since the image of a Cauchy sequence in D under any Mobius tranformation
is another Cauchy sequence in D, this notion does not depend on the choice of ®. Call two
D-Cauchy sequences z = (z, : n € N) and y = (y, : n € N) equivalent if (z1,y1, T2,Y2,---)
is also a D-Cauchy sequence. Let D denote the set of equivalence classes of D-Cauchy
sequences. We can define an injection + : D — D by u(2) = [(2, 2, 7,...)] and a bijection
®:D — Dby & T, : n € N) = lim, ®(z,). We give D the topology of D. Define
the boundary 8D = D \ «(D). Note that ® o = ® so ® maps dD onto the unit circle
C={z€C:|z| =1}. For b € 0D, we say that a simply connected subdomain N C D is
a neighbourhood of b in D if {z € D : |z — ®(b)| < €} C ®(N) for some & > 0.

A Jordan curve is a continuous one-to-one map v : C' — C. Say D is a Jordan domain
if D\ D is the i image of a Jordan curve. It can be shown in this case that ® extends to a
homeomorphism of D to I, so ¢ extends naturally to a homeomorphism of D to D and we
can identify 0D with D\ D.

On the other hand, an H-Cauchy sequence is a sequence (2, : n € N) in H which either
converges in C or is such that |z,| — 0o as n — oco. Hence we write 0H = R U {oo}. In
the domain D = H \ (0, 4], for z € [0,7), the D-Cauchy sequences (z + (1 +1i)/n : n € N)
and (z + (—1+414)/n : n € N) are not equivalent, so their equivalence classes z+ and z—
are distinct boundary points.

By Corollary 1.3, the conformal isomorphism ® : D — D is unique up to a Mdbius
transformation of . Let w € D and let by,by,b3 € 0D be distinct and ordered anti-
clockwise. Then ® may be specified uniquely by imposing any one of the three following
additional conditions:

®(w) =0 and ®'(w) > 0; P(w)=0and ®(by) =1; @(by) =1,P(hy) =i, P(b3) = —



1.4 SLE(0)

Consider the (deterministic) process v = (v, : t > 0) in the closed upper half-plane H given

by
v = 2iV/t.

This process belongs to the family of processes (SLE(k) : k € [0,00)) to which these notes
are devoted, corresponding to the parameter value kK = 0. Think of y as progressively eating
away the upper half-plane so that what remains at time ¢ is the subdomain H; = H \ Kj,
where K; = v(0,t] = {7s : s € (0,t]}. There is a conformal isomorphism g; : H; — H given

by
g1(2) = V22 + 4t

which has the following asymptotic behaviour as |z| — oo
2t -
a(z) =2+ - +0(|2]7?).

As we shall explain in Proposition 4.2, there is only one conformal isomorphism H; — H
such that g,(2) — z — 0 as |z| — oo. Thus we can think of the family of maps (g; : ¢ > 0)
as a canonical encoding of the path ~.

Consider the vector field b on H \ {0} defined by

2 2z —iy)
o) =2 ="agye

Fix z € H\ {0} and define

/4, ifz=1
Cz)y=inf{t 20:v=2z2}= {y/ o BE z'y
00, otherwise.
Then ((z) > 0 and z € K; if and only if {(z) < t. Set z; = g;(2). Then (z : t < ((2))
satisfies the differential equation
,?.Jt = b(Zt)

and, if ((z) < oo, then zz — 0 as t 1 ((z). Thus (g:(2) : z € H\ {0}, ¢ < ((2)) is
the (unique) maximal flow of the vector field b in H \ {0}. By mazimal we mean that
(2 : t < ((2)) cannot be extended to a solution of the differential equation on a longer time
interval.

1.5 Loewner evolutions

Think of SLE(0) as obtained via the associated flow (g; : t > 0) by iterating continuously
a map gs, which nibbles an infinitesimal piece (0,2iv/6t] of H near 0. Charles Loewner,
in the 1920’s, showed that one could evolve families of complex domains by more general
continuous iterations, where the nibbling point & moves over time. Although it is not



initially clear what this would mean for the path ~, one can certainly consider the flow in
H of the time-dependent vector field

b(t,z) = t>0,z€H

2
z=&
and may hope to use this to describe implicitly a family of domains (H; : ¢ > 0), and
possibly a path 7.

Oded Schramm, in 1999, realized that for some conjectural conformally invariant scaling
limits v of planar random process, with a certain spatial Markov property, the process
& = (& :t > 0) would have to be a Brownian motion, of some diffusivity x. The associated
processes 7y were at that time totally new and have since revolutionized our understanding
of conformally invariant planar random processes.
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We review briefly some essentials of stochastic calculus and Brownian motion, including
optional stopping, Itd’s calculus and the strong Markov property of Brownian motion. We
give precise definitions and statements, adapted to our later needs, but do not always state
the definitive form of a result, nor do we give proofs.

2.1 Martingales and stopping times

For the purposes of our general discussion, we suppose given a probability space (€2, F,P)
equipped with a filtration (F;):>0. An adapted integrable process M = (M;);»o is a mar-
tingale if B(M;|Fs) = M, almost surely for all s,¢ > 0 with s < t. We consider here only
continuous martingales. A random variable 7" in [0, o0] is a stopping time if {T' < t} € F;
for all t > 0. We define

Fr={AeF:An{T <t} € F, forallt > 0}.

By the optional stopping theorem, if M is a continuous martingale and 7" is a stopping
time, then the stopped process M7 is also a continuous martingale, where M, = My ;. An
adapted process M is a local martingale if there is a sequence of stopping times (7}, : n € N)
with T;, 1 oo almost surely such that M is a martingale for all n. Then (T} : n € N)
is called a reducing sequence for M. If M is a continuous local martingale starting from
0, then we may obtain a reducing sequence by setting 7, = inf{t > 0 : |M;| > n}, which
has the useful extra property that the martingales M7" are uniformly bounded. If M
is a continuous local martingale and T is a finite-valued stopping time such that M7 is
uniformly bounded, then E(M7) = E(M,). Even if T can take the value oo, if M* is
uniformly bounded, then the limit My, = lim;_,o, M; exists almost surely on {7 = co} and
the identity E(M7) = E(M;) remains true. Moreover, if S is another stopping time, with
S < T, then E(Mr|Fs) = Mg almost surely. These are all aspects of the optional stopping
theorem.

To every continuous local martingale M there corresponds a unique continuous non-
decreasing adapted process [M] starting from 0, called the quadratic variation of M, which
is characterized by the property that (M7 —[M], : t > 0) is a local martingale, and is given
by

|2nt]—1
[M], = nh_glo Z (M(k+1)2—n - MkQ—")Q-
k=0

where the limit holds in probability, and uniformly on compact time intervals. From the
preceding statement follows a polarized extension: to every pair of continuous local mar-
tingales M and N, there corresponds a unique continuous finite-variation adapted process
[M, N] starting from 0, called the covariation of M and N, which is characterized by the



property that (M;N; — [M, N]; : t > 0) is a local martingale, and is given by

|27t]—1

[M,N]y = lim > (Mgsve-n — Mia—n)(Ngsryz—» — Nya-n)
k=0

the limit holding in the same sense.

2.2 Brownian motion

A continuous adapted R?-valued process B = (B;)i>o is an (F;)iso-Brownian motion if,
for all s, > 0 with s < ¢, the increment B; — B, is independent of F; and is normally
distributed with mean 0 and covariance matrix (¢t —s)/. This property suffices to determine
the law of B conditional on Fy: for any non-negative measurable function F' on the set of
continuous paths W = C([0, c0), R"), we have

E(F(B)|Fy) = f(Bys) almost surely (1)

where

f(x):/WF(w)ux(dw), r € R

and where p, is Wiener measure with starting point x.

Given a Brownian motion B and a stopping time 7', we can define a new filtration
(ft)tzo by F, = Fri, and, on the event {T < oo}, we can define a new process B by
setting B, = By,,. Then, conditional on {T < oo}, Bis a (ﬂ)tZO—Brownian motion.
This is called the strong Markov property of Brownian motion. It is a powerful way to do
computations for Brownian motion, taken in conjunction with equation (1) and using the
properties of conditional expectation. We usually omit reference to the filtration unless we
wish to make a statement involving more than one filtration, such as the strong Markov
property.

A complex-valued process Z = X + 1Y is a complex Brownian motion if (X,Y) is a
Brownian motion in R2.

Lévy’s characterization is a useful way to identify Brownian motions: for an R?-valued
process B = (B',..., BY), if B! is a continuous local martingale for all i and if [B?, BY], =
td;; for all 7,7 and all ¢ > 0, then B is a Brownian motion.

2.3 1Itd’s integral

Given a continuous finite-variation adapted process A and a continuous adapted process
H . we can form the Lebesgue-Stieltjes integral H - A. This is a continuous finite-variation
adapted process starting from 0 and is given by

|27t —1

(H . A)t = lim Z szfn (A(k'—}-l)Z*" - Aszn)

n—00
k=0



where the limit holds in probability, and uniformly on compact time intervals. Given a
continuous local martingale M and a continuous adapted process H, we can form the [t
integral H - M. This is a continuous local martingale starting from 0 and is given by

|27t -1
(H - M)t = n]]_)Igo Z Hk?‘"(M(k—l—l)Q—" - MkQ—n)
k=0
the limit holding in the same sense. It is characterized among continuous local martingales
starting from 0 by the property that [H - M] = H? - [M]. We usually write

t t
(H - M), = / HodM, —(H-A), = / H,dA,.
0 0

A continuous semimartingale X is any process having a decomposition X; = Xo+M;+ A,
for all ¢ > 0, where X, is an Fy-measurable random variable, M is a continuous local
martingale starting from 0, and A is a continuous adapted process of finite variation, also
starting from 0 The decomposition X = Xy + M + A is then unique, and we extend the
Ito integral to continuous semimartingales by setting

¢ t t
/ H,dX, =/ HsdAs—i—/ H,dM;.
0 0 0

An R?-valued process is called a continuous semimartingale if each of its components is a
continuous semimartingale (in the same filtration).

We shall make extensive use of Itd’s formula: if D is an open set in R? and f: D — R
is a C? function, and if X = (X',..., X9) is a continuous semimartingale with values in
D, then

o I A -
F(X5) = F(X0) + 3 / 0. (X,)dXi+ 5 3" / 0:0; F (X)X X9, 3 0.
i=1 70 0

ij=1

This is conveniently written in differential form
. 1 . .
df (Xy) = 0, f (Xy)dX{ + §3iajf(Xt)dthdXt]

where we sum over the repeated indices.
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We discuss the relation of Brownian motion to harmonic functions and then illustrate how
this can be used by giving a proof of the Schwarz lemma. Then we show that the image
of complex Brownian motion under a holomorphic function is a local martingale, indeed
is itself a complex Brownian motion, up to a random change of time-scale. This leads to
some useful formulae for harmonic measure.

3.1 Probabilistic solution of the Dirichlet problem

Let u be a C? function on C = R? which is harmonic in a bounded domain D. Fix z € D
and let B be a complex Brownian motion starting from z. Consider the stopping time
T=Tp=inf{t >0: By ¢ D}, then T < oo and Br € D\ D, almost surely. Set

M = u(z) + /Ot Vu(B;)dBs

then M is a continuous local martingale. By It6’s formula, u(B;) = M, for all ¢t < T, so
M7 is uniformly bounded and, by optional stopping,

u(z) = My = E(My) = E(u(Br)).

Hence u can be recovered from its restriction to D\ D. (This argument is not special to
two dimensions.)

Suppose now that f = u + v is a holomorphic function defined on a domain Dy and
that D is a bounded domain with D C D,. By the Cauchy-Riemann equations, the real
and imaginary parts of f are harmonic in Dy so, by a simple patching argument, there
exist C? functions v and v on R? which are harmonic on D and such that f = u + iv on
D. Thus we obtain the useful formula

f(z) = E.(f(Brp))-

3.2 Proof of the Schwarz lemma

A number of results of complex analysis can be understood well using Brownian motion.
Here we give a proof of Lemma 1.2. Let f : D — D be a holomorphic function with
f(0) = 0. Fix z € D and consider a complex Brownian motion B starting from z. Fix
r € (|z[,1) and € € (0,1 — |z|) and consider the (almost surely finite) stopping times

S=inf{t>0:|B|=r}, T=inf{t >0:|B;—z| =¢}.

Consider the function g(w) = f(w)/w. By Taylor’s theorem, ¢ is analytic and hence
holomorphic in I so

9(z) = E(g(Bs)) = E(g(Br)).
Now |g(Bgs)| < 1/r, so, letting r 1 1, we deduce that |g(z)| < 1 and hence |f(z)| < |z



Suppose now that eg(z) = 1. We know that By is uniformly distributed on the set
C={w:|w—z| =¢} and |e?g(w)| < 1 for all w € D. Hence we must have e?g(w) = 1
for all w € C. We deduce that the set A = {w € D : e?g(w) = 1} contains every open ball
in D centred at z. By a finite number of iterations of this argument, it follows that A = ID.

3.3 Conformal invariance of Brownian motion

Theorem 3.1. Let D and D' be complex domains and let z € D and z' € D'. Let B and
B' be complex Brownian motions starting from z and 2’ respectively. Set

=inf{t>0: B, ¢ D}, T'=if{t>0:B,¢D'}.

Suppose that there exists a conformal isomorphism ® : D — D' such that ®(z) = 2'. Set
T = fOT |®'(By)|?dt and define for t < T

7(t) = inf{ / |®'(B,)|*dr = t} B, = ®(B, ).

Then (T, (By),.;) and (T", (B})i<1) have the same distribution.

Proof. Assume for now that ® extends to a conformal map on a neighbourhood of D in C.
Then we may define a continuous semimartingale Z and a continuous and strictly increasing
adapted process A by setting

TNt
7 = ©(Brng) + (Br — Brng), At=/ & (B,)Pds + (t— T A1),
0

and we may extend 7 to a continuous function on [0, c0) by setting
7(t) =inf{s > 0: A; = t}.
Write ® = u + v, B, = X; +1iY; and Z; = M, + iN;. By 1t6’s formula, for t < T,

0 0 0 0
S(B)AX, + 5 (B)dY:, dN, = 5 (B)dX, + 5 (B)dY,

dM, =
t oy oy

and so, using the Cauchy—-Riemann equations,
dM,dM, = |®'(B,)|*dt = dA; = dN,dN;, dM;dN; = 0.
On the other hand, for ¢t > T,
dMy; =dX;, dN,=dY;, dMdM;=dt=dA, =dNdN;, dM;dN,=D0.

Hence M, N, M>—A, N>— A and M N are all continuous local martingales. Set M, = M. ()
and N; = N,(). Then, by optional stopping, M, N, M> —s, N2 — s and MN are

10



continuous local martingales for the filtration (.7-' )s>0, where .7:- .7-}(5) Hence, by Lévy’s
characterization of Brownian motion, Z = M +iN is a complex (fs)s>0—Brown1an motion
starting from 2’ = ®(z). Since T = 1nf{t 0:7, ¢ D'} and B, = Z, for t < T, this proves
the claimed identlty of distributions.

In the case where ® fails to be C? in a neighbourhood of D, choose a sequence of open
sets D, 1 D with D,, C D for all n. Set D! = ®(D,,) and set

T,=inf{t >0:B, ¢ D,}, T,=inf{t>0:B, ¢ D,}.

Set T, = fOT” |®'(B,)|*dt. Then T, 1 T and T! 1 T" almost surely as n — oc. Since ® is C?

in a neighbourhood of D,, we know that (T, (B,), «7,) and (T}, (B})i<1z) have the same
distribution for all n, which implies the desired result on letting n — co. O

3.4 First exit distributions and harmonic measure

The conformal invariance property provides an effective means to calculate the distribution
of Brownian motion on its first exit from a simply connected proper domain D. Let B be
a complex Brownian motion starting from z € D and set T = Tp = inf{t > 0: B, ¢ D},
as above. Then T' < co almost surely. In the case D = D and z = 0, we know that B;
converges in I as ¢ 1 T, with limit By uniformly distributed on the unit circle. We can
choose a conformal isomorphism ® : D — D taking z to 0. By conformal invariance, as
t 1 T, By converges in D to a limit B} € AD. Denote by hp(z,.) the distribution of Bj.
This first exit distribution is also called the harmonic measure for D starting from z. In
the case where D is a Jordan domain, we have B} = Br and, as we showed above, for
every harmonic function % in D which extends continuously to D, we can recover u from
its boundary values by

u(z) = B(u(By)) = /6 ()bl ds).

We can compute the harmonic measure as follows. By conformal invariance, for s, s € 0D
and 61,6, € [0,27) such that ®(s;) = " for j = 1,2, we have
0y — 0,

o

We often fix a parametrization of 0D by some interval I C R and then regard hp(z,.) as a
measure on /. For good parametrizations the harmonic measure then has a density given

by

P(B} € [s1,52]) = Py(Brg, € [eial,ei92]) =

1 df

For example, take D = I and parametrize the boundary as (e : ¢t € [0,27)). For w =
x + 1y € D, the Mobius transformation &, takes w to 0. The boundary parametrizations
are then related by e = (e — w)/(1 — we®), so
L 1—jw? 1 1— 22 —y?
o et —w[2 ~ 2 (cost — z)2 + (sint — y)?’

hp(w,t) = 0<t<2m. (2)

11



Or take D = H with the obvious parametrization of the boundary by R. Fix w =
z + iy € H and define ® : H — D by ®(z) = (¢ — w)/(z — @) so that ®(w) = 0. The
boundary parametrizations are related by e = (t — w)/(t — @), so

1 1 Y
=21 )} = R.
fim(w,?) T m (t — w) 7((z —t)2+ y?)’ te

3.5 An estimate for harmonic functions

The following lemma allows us to bound the partial derivatives of a harmonic function in
terms of its supremum norm.

Lemma 3.2. Let u be a harmonic function in D and let z € D. Then

ou 4| || 0o

()| S — v

Oz mdist(z,0D)

Proof. 1t will suffice to prove, for all € > 0, that the estimate holds with an extra factor of

1+ ¢ on the right. Fix € > 0. By affine transformation, we reduce to the case where z = 0
and dist(0,0D) =1+ . Then u is continuous on D so, for z € D,

u(z) = /0 " (e (z, 0)do.

The formula (2) shows that Vhp(.,#) is bounded on a neighbourhood of 0, uniformly in 6,
with )
Vhp(0,60) = ;(cos 6,sin 0).

Hence we may differentiate under the integral sign to obtain

27
Vu(0) = l/ u(e?)(cos 6, sin H)df
0

™

so that

u [ullo [ lullec _ 401+ )lJufloo
— < 0|df = = - .
oz (0)‘ 7T /0 | cos ) 7 dist(0, 0D)

12
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We consider partitions H = HUK where H is a simply connected domain and K is bounded.
Thus H is a neighbourhood of oo in H, as in Subsection 1.3. We call the complementary
set K a compact H-hull. We shall identify a canonical choice of conformal isomorphism
gr : H — H and derive some useful properties.

4.1 Existence and uniqueness of gx

Proposition 4.1. Let x € R and let D be a neighbourhood of x in H. Let ® : D — H
be a conformal isomorphism which is bounded near x. Then ® extends analytically to a
neighbourhood of x in C with ®'(x) > 0.

Proof. Tt will suffice to consider the case x = 0. Fix ¢ > 0 and consider the set
D={zeC:ze€DorzeDorze€ (—¢ce)}

We can and do choose ¢ sufficiently small so that D is a (proper) simply connected domain.
By the Riemann mapping theorem, there exists a unique conformal isomorphism ¥ : D —
C\ ((—o0,—1] U [1,00)) with ¥(0) = 0 and ¥’(0) > 0. By reflection symmetry and
uniqueness, ¥(z) = W¥(2). Hence ¥ must map (—¢,¢) to (—1,1) and, since ¥(0) > 0,
U must restrict to a conformal isomorphism from D to H. Consider now any conformal
isomorphism ® : D — H which is bounded near 0. Then f = ® o U~! is a Mobius
transformation and f is bounded near 0, so f is holomorphic in a neighbourhood of 0 in C
with f'(0) > 0. But ® = f o ¥ and ¥(0) = 0 so, by the chain rule, ® extends analytically
to a neighbourhood of 0 in C with ®'(0) > 0. O

Proposition 4.2. Let K be a compact H-hull. There exists a unique conformal isomor-
phism gx : H — H such that gx(z) — 2 = 0 as z = 0o. Moreover, for some ax € R, we
have a

gx(z) =z + 7’( +0(]2]?), z— .

Proof. Set D = {z € C: —1/z € H}. Then D is a neighbourhood of 0 in H. By the
Riemann mapping theorem, there exists a conformal isomorphism ® : D — H which is
bounded near 0. Then, by Proposition 4.1, ® extends analytically to a neighbourhood of
0 in C with ®'(0) > 0. By translation and rescaling if necessary, we may choose ® so that
®(0) = 0 and ®'(0) = 1. Then, by Taylor’s theorem, for some b,c € R,

B(2) = 2+ b2° +c2® +O(|z]"), z—0.

Define g on H by gx(z2) = —1/®(—1/z) —b. It is a straightforward exercise to check that
gx is a conformal isomorphism to H having the claimed expansion at oo, with ax = b — c.

Finally, if g : H — H is any conformal isomorphism such that g(z) — 2z — 0 as z — oo,
then ® = gx o g~ is a conformal automorphism of H with f(z) —z — 0 as z — oco. But
then f is a Mobius tranformation by the Schwarz lemma, so we must have f(z) = z for all
z, showing that g = gk O

13



The last two propositions combine to give the following whole-plane perspective, which
is sometimes helpful. Write H* for the domain containing all points of H and their complex
conjugates, together with all points z € R such that H is a neighbourhood of x in H.
Then gx extends uniquely to a conformal isomorphism gj with domain H*. We have
95 (2) = g3 (2) for all z € H* and g} (H*) = C\ S for some compact set S C R. We abuse
notation in writing gx(x) for gy (z) when z € H* N R, whilst continuing to regard gx as
defined on H.

Let K and gx be as in the last proposition, and fix r € (0,00) and b € R. Set
K=rK+b={zcH:(2—b)/r € K}. Define g : K — Hby g(2) = rgx((2—b)/r). Then
g is a conformal isomorphism and

7’20,](

g(z) =z + +0(]2]7?), 2z — oo.
Hence, by uniqueness, we have ¢ = ¢, x4 and a, x5 = rax. .

Consider now two compact H-hulls K and Ky, with Ko C K. Set K = gk, (K \ Ky) and
consider the function g = gz o gk,- Now g, restricts to a conformal isomorphism H — H
so g is a conformal isomorphism H — H. Also, as |z| — oo we have

— g (2 Ok N2) = 5 4 YKo T Ak |2
g(z)—gxo()+gKO(Z)+O(\gKO( )IT) =2+ ———+0(lz[7).

S0, by uniqueness, we obtain gx = gz © gk, and ax = ai + ak,.

4.2 Estimates on gg

Proposition 4.3. There is a constant C < oo with the following properties. For all
r € (0,00) and all £ € R, for any compact H-hull K C rD + £, we have for all z € H

9K (2) — 2| < Cr (3)
and Crlax]
(0774 rag

— - < 2= > 2 4

on(z) =2 = L < T -l @

Proof. We shall prove the result in the case r = 1 and £ = 0. The general case then follows
by scaling and translation. Define for 8 € [0, 7]

ax(0) = Ege (Im(Br)),

where B is a complex Brownian motion starting from e and T = Ty = inf{t > 0: B, ¢
H}. Set

o= /0 " (O)p(0)do (5)
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where p(f) = 2sinf/m. Set ¢(z) = Im(z — gk(2)), then ¢ is bounded and harmonic on
H. Note that Im(gx(B;)) — 0 as t 1T T, so, by optional stopping and the strong Markov

property, -
6(2) = E, (Im(By)) = /0 ho (2, 0)ax (0)d6, |2 > 1 (6)

where D = H \ D. Consider the conformal isomorphism w = ®(z) = z+ 2! : D — H and
note that ®(e¢?) = 2cosf. Then, for z € D,

d _ 1 2sin 6
hD(z’ 0) = hH(w7 2COS9)@@(619) = Im <2COSH — w) - .

There is a constant C' < oo such that, for all |z| > 3/2 and 0 € (0, 7),

_ [2cosf — 277 o C
2|z + 27t —2cosl] T |z|?

1 1
w—2cosf =z

Define
f(z) =u(z) +iv(z) =gk(2) —2—a/z, z€H

where @ is given by the integral in (5). Then f is holomorphic in D and f(z) — 0 as
z — 00. Also

a

T 1 1
=tm (-2) - :/1 — =) ax(0)p(6)db
o) =t (<2) = 62 = [t (g = 1) ax0p00)
so |v(z)] < Ca/|z|* whenever |z| > 3/2.
Since v(z) = 0 for |z| > 3/2, we can extend v by reflection as a harmonic function in
{|z| > 3/2}, with the same bounds. Hence, for |z| > 2, we can apply Lemma 3.2 in the
domain {w € C: |w| > (3/4)|2|} to obtain, for a new constant C' < oo,

ov ov Ca
i il < 2
o e < o
So, for all p > 2 and 6 € (0,7),
| fpe™)| = ) f(z)dz| < V2Ca /00 s73ds = Ca :
peif p V2p?

This forces @ = ax and gives the estimate (4). The estimate (3) then follows immediately
for |z| > 3/2, and then for all z, because we must have gx(H N {|z| < 3/2}) C pD, where

p =sup{|gx ()| : [2| = 3/2}. O
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4.3 Half-plane capacity

The constant ay is called the half-plane capacity of K, written hcap(K). From the repre-
sentation (5), we now know that

hecap(K) =ax >0
with equality only if K = (). From Subsection 4.1, we have, for r € (0,00) and b € R,
hcap(rK + b) = r* hcap(K)
and, for Ky C K,
heap(Kp) < heap(gx, (K \ Ko)) + hecap(Ky) = heap(K)

with equality only if Ko = K. For the slit S = (0,4], we have gs(z) = v2?+1 and
hcap(S) = 1/2. On the other hand, for the half-disc A = D N H, ga(z) = z + 2~" and
hcap(A4) = 1. By comparison with A, we see that

heap(K) < rad(K)?

for all compact H-hulls K, where rad(K) is the radius of the smallest ball centred on the
real axis and containing K. In the proof of Proposition 4.3, we saw that yhp(iy, ) — p(f)
uniformly in € [0, 7] as y — oco. So, from (5) and (6) we obtain

heap(K) = yll)rgo yE;y (Im(Bry)).

Thus, half-plane capacity may be considered to measure the average height of the boundary
of a hull seen by a Brownian motion started at oo.

4.4 Boundary deformation under gy

The following result illustrates another way that Brownian motion provides a tool to un-
derstand conformal maps.

Proposition 4.4. Let K be a compact H-hull and let £ € R. Suppose that H =H\ K is a
neighbourhood of & in H. Then gi extends analytically to a neighbourhood of & in C, with

9x (&) € (0,1].

Proof. Since gk is bounded near &, the possibility of extending g analytically near &, with
g5 (&) > 0, is established in Proposition 4.1. Let B be a complex Brownian motion starting
from z = x + 4y and consider

Ty =inf{t >0: B, ¢ H}, Tg=inf{t >0: B, ¢ H}.

Note that, for a,b € R with a < b, in the limit y — oo with z/y — 0, we have

b 2
Wsz(BTH S [CI/, b]) = / Wdt —b—a.

z)
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Suppose that H is a neighbourhood of [a,b] in H and that z € H, then by conformal
invariance of Brownian motion

IPQK(Z)(BTH € [gK(a)’gK(b)]) = I[DZ(BTH € [a" b]) < IPZ(BT]H[ € [a7 b])

Set z = iy and write gx(2) = u + iv. Note that, as y — oo, we have v/y — 1, v — ©
and u/v — 0. Hence on multiplying the preceding inequality by 7y and letting y — oo we
obtain

9x(b) — gx(a) < b —a.

The bound g (£) < 1 then follows by the mean value theorem. O
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5

We now discuss two results which are fundamental to the theory of Schramm-TLoewner
evolutions. The first, due to Loewner, establishes a one-to-one correspondence between
continuous real-valued paths (&);>0 and increasing families (K;);»o of compact H-hulls
having a certain local growth property. The null path & = 0 corresponds to K; = (0, 22\/7?]
For smooth paths (&);>¢ starting from 0, we have K; = {7, : 0 < s < ¢} for some continuous
path (7;)i>0 in H starting from 0 and such that v, € H for all ¢ > 0. More generally, it may
be the case that (K;);o is generated by a continuous path (7;);>o in H, meaning that H, is
the unbounded component of H \ {75 : 0 < s < t}. The second key result, due (for x # 8)
to Rohde and Schramm, tells us that, when (&);>0 is a Brownian motion, of any diffusivity
k € (0,00), the corresponding compact H-hulls (K});» are almost surely generated by such
a path ~.

5.1 Local growth property and Loewner transform

Let (K)o be a family of compact H-hulls. Say that (K)o is increasing if, for all s,¢ > 0
with s < ¢, we have K, C K; and K; \ K # (. Assume that (K});>o is increasing and set
K = gk, (K \ K;). Say that (K)o has the local growth property if, for all T' > 0,

sup rad(Ks¢) -0 as hlO. (7)

$,t€[0,T],0<t—s<h

For such a family, by compactness, there is, for each ¢ > 0, a unique & € C such that
& € Ky for all A > 0. Moreover, & € R and, using the estimate (3), we can show that &
depends continuously on ¢. The process (&) is called the Loewner transform of (K;)i>o.
Note that we have, for each ¢t > 0, as h | 0,

heap(Ki1p) — heap(K;) = heap(Kypyn) < rad(Kt,t+h)2 — 0.

If we assume that Ky = () and rad(K;) — oo as t — oo, then the map t — hcap(K;) will
be a homeomorphism of [0,00). Then, by a time-reparametrization, we may if we wish
assume that

hcap(K;) =2t forallt > 0. (8)

5.2 Loewner’s differential equation

Let (&)i>0 now be any continuous real-valued function and consider the open set U =
{(t,z) € [0,00) xC: z # &}. Define a time-dependent, holomorphic vector field b : U — C
by

2 2(z — & —iy)
b(t,z) = =
(2] z—& 2 = &2
Define U,, = {(t,2) € U : |z — &| > 1/n} and note that, for all (¢, 2), (¢, 2') € U,,

b(t, z) — b(t, 2")| < 2n?|z — 2'|.
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By standard results in the theory of ordinary differential equations, for each z € C\ {&},
there is a unique ((z) € (0,00) and a unique continuous map ¢ — 2z; : [0,((2)) — C such
that, for all ¢ € [0,((2)), we have (¢,2;) € U with

b2
zt=z+/0 Zs—fsds 9)

and, if {(z) < oo, then [z — &| — 0 as ¢ 1 ((2). Then (2);<¢(z) is the mazrimal solution to
Loewner’s differential equation z; = 2/(z; — &) starting from z. Restricting to the upper
half-plane, set H; = {z € H : ((z) > t} and define g, : H; — C by ¢;(z) = z;. We call the
map ¢ : C\ {&} — (0, 00] the lifetime and we call the family of maps (g;)¢>0 the Loewner
flow for driving function (&)¢>o.

5.3 Loewner’s theorem

Theorem 5.1. Let (&)i>0 be a continuous real-valued function. Let  be the lifetime and
(9t)t=0 the Loewner flow for driving function (§)i0. Set Ky = {z € H : ((2) < t} and
H, = H\ K;. Then (K)i>0 is an increasing family of compact H-hulls having the local
growth property, and parametrized so that hcap(Ky) = 2t for all t. Moreover, we obtain all
such families of compact H-hulls in this way. Moreover, (K)o has Loewner transform
(&)1>0- Moreover, for allt > 0, g, is the unique conformal isomorphism Hy — H such that
g1(z) — 2z — 0 as |z] — oo. Moreover, for all x € R\ {&}, H; is a neighbourhood of x in
H if and only if ((x) > t.

Proof. Define Hf = {z € C\ {0} : ¢(z) > t} and define g] : H — C by g¢!(z) = 2, where
(2t)t<¢() is the maximal solution to Loewner’s equation starting from z. By standard
results for differential equations, the set HJ is open and the map gz is holomorphic and
injective, for all ¢ > 0. By taking the complex conjugate in Loewner’s equation, we see that
(Zt)t<c(z) is the maximal solution starting from z. Thus, Hg is closed under conjugation

and g;r (2) = gg (2). We deduce that H, = HtT N H is open, that g; is holomorphic and
injective, and that, since gg is injective, we must have g,(H;) C H. We see also that H; is
a neighbourhood of z in H whenever ((z) > ¢.

Note that Im(b(¢,2)) < 0 for all (¢,2) € U with z € H. So, given ¢ > 0 and z € H,
we can solve the differential equation Z; = b(s, z;) in H, backwards in time, with terminal
point z; = z, to find a point z € H such that g;(z9) = z. Hence g; maps H; onto H and
so is a conformal isomorphism from H; to H. This implies in particular that H; is simply
connected.

In order to establish the remaining claims about (¢;)¢>0 and (K;);>0, we need some
simple estimates for the Loewner flow. Fix T' > 0 and set r = sup,<r & — &o| V VT. Fix
R > 4r and z € H with |z — &| > R and write z; for g;(z) as usual. Define

T=inf{t € [0,{(2)) : |zt — 2| =71} AT.
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Then 7 < ((2) and |z — &| = |(z — 2) + (2 — &) + (§o — &)| = R —2r for all t < 7. Now

t 9 t — 2, — &,
zt—z:/ ds, z(zt—z)—2t:2/ gds.
0

Ozs_gs Zs_gs

so, for t < 7,

2t
<_<Ta
R—2r T

S~

(4r + 2[&o| )t
R—-2r

|z — 2| < |2(zy — 2) — 2t| <
The first estimate implies that 7 = T (or |z, — z| < 7/r < T/r < r, a contradiction) and
then ((z) > T so z € Hy. Hence

|z — &| < 4r for all z € K. (10)

and so Kt is a compact H-hull. Then from the second estimate we deduce that, for all
t > 0, we have z(g;(2) — 2) = 2t as |z| — oo. In particular g;(z) — 2z — 0 as |z| = oo, so
gt = gk, and then hcap(K;) = 2t for all ¢.

Fix s > 0. Define for t > 0

gt = §s+t, th = gs(Hs+t): f(t =H \ I:It; 0t = G541 © gs,_l-

Then (§i)i>0 is the Loewner flow driven by (ét)m, H, is the domain of §, and K, =
9s(Ks+t \ Ks) = K 514 The estimate (10) applies to give

|z —&| <4 ( sup &y — &V \/f) for all z € K 544

sQus+t

Hence (K});>o has the local growth property and has Loewner transform (&;);o.

Suppose now that (K};);>o is any increasing family of compact H-hulls having the local
growth property, parametrized so that hcap(K;) = 2t for all t. Set g, = gx, and take (&):>0
to be the Loewner transform of (K;):o. We know that (&);>0 is continuous and now show
that (g:):>0 is the Loewner flow driven by (&)>o.

Fix z € H and define ((z) = inf{t > 0: z € K;}. If ((2) < oo then for s < {(z) <t
we have z € K, \ K; so g5(2) € K, and so |gs(z) — &| < 2rad(K,;); hence by the local
growth property |gs(z) — &| — 0 as s 1 ((2).

Fix 5,4 > 0 with s < t and z € H;. Recall that hcap(K,;) = 2(t — s) and gk, ,(9:(2)) =
g:(2). Apply the estimates of Proposition 4.3 to the compact H-hull K, taking £ = &,
w = gs(2) and r = 2rad(K,,), to obtain

19:(2) — g95(2)| < 2C rad(Ksy) (11)
and 2t~ ) | _ ACrad(K,,)(t - 5)
gs(z) - fs = |gs(z) - €s|2

9:(2) — gs(2) —
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provided |gs(2) — &| > 4rad(K,:). Then, by the local growth property, the function
s — gs(z) is continuous on [0,%]. Hence |gs(z) — &/ is uniformly positive on [0, ¢] and so,
by the local growth property, s — gs(z) is differentiable on [0, ¢] with

) 2

M= m e
Hence Hy = {z € H: {(z) > t} and (g;)¢0 is the Loewner flow driven by (&;):>0. Hence all
such families of compact H-hulls can be obtained by a Loewner flow.

Finally, fix z € R and suppose that H; is a neighbourhood of z in H. Since K; = Ny~ K,
there exists s > t such that H is a neighbourhood of z in H. Write g; for the extension
of g; as a conformal map on the reflected domain H;. Then = € H? so g;(z) € g;(H?).
On the other hand & € gf(H; \ H}), so ¢:(z) # &. On letting 2 — z in (11), we obtain
lg; (x) — gi(z)| < 2Crad(K,,), so s — |gi(z) — & is continuous and hence uniformly
positive on [0, ¢]. Now we can pass to the limit z — z in (the integrated form of) Loewner’s
equation to see that (g¥(z) : s < t) is a solution, and hence we must have ((x) > t. O

5.4 Rohde—Schramm theorem

Theorem 5.2. Let k € [0,00) and let (§)i>0 be a real Brownian motion of diffusivity
k. Let (K)o be the family of compact H-hulls with Loewner transform (&)iso, given by
Theorem 5.1. Then there exists a unique continuous random process (Vi)iso in H which
generates (K;)eo-

The importance of the family of such processes v = (v;)i»0 was first recognised by
Schramm. We call v a Schramm—Loewner evolution of parameter k or SLE (k) for short.

5.5 Scaling and Markov properties of SLE

Proposition 5.3. Let v be an SLE(k) for some k € [0,00). Fiz r € (0,00) and define a
rescaled process ¥ = (Ft)i0 by

Y= 7'_1%21:-
Then ¥ is also an SLE(k).

Proof. Define for t > 0 and z € H
& =r"6n, ((2)=r7%(rz)

and for ¢t < ((z) define

9u(2) = 17 gpy(r2).
Then (&):>0 is a Brownian motion of diffusivity . Also, §o(z) = z and from Loewner’s
equation for (g¢);>o we obtain
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with g;(2) —& —0ast1((2) for all z € H. So (¢)s>0 is the Loewner flow driven by (€)1>0-
Define K; = r'K,2. Then K; = {z € H: ((2) < t} so (K)o is the family of compact
H-hulls with Loewner transform (&;);50. Now 7 generates (K;);»o so 7 is an SLE(x). O

It is simplest to frame the Markov property in terms of the compact H-hulls (K}):>o
rather than the path 7.

Proposition 5.4. Let (K;);»o be (the compact H-hulls of) an SLE (k) for some k € [0, 00).
Write (gi)i>0 and (&;)i>0 for the associated Loewner flow and transform. Fiz s > 0 and for
t >0 set K, = K11 = 95(Ksyt \ Ks). Then the family (INQ — &5)is0 s also an SLE(k)
and is moreover independent of (Ky)ocugs-

Proof. Note that gz, o gs = gs14 S0

Kt,t—kh - gf{t (gs(Ks—HH—h \ Ks) \gs (Ks+t \ Ks)) - gs—|—t(Ks—|—t—|—h \ Ks—|—t) = Ks—|—t—|—h,s—|—t-

Hence (f(t)t;o has Loewner transform (£;,);>0 and so (f(t —&5)e=0 has Loewner transform
(&)i0, where & = &4y — &. The desired conclusions now follow because (&)i>0 is a
Brownian motion of diffusivity x independent of (&,)o<uss- O
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6

The restriction to the real line of the Loewner flow associated to SLFE(k) is a simple tran-
formation of a flow of Bessel processes. For these processes, which have scaling properties
like Brownian motion and SLE, it is possible to do some explicit calculations. Once trans-
lated back in terms of the Loewner flow, we can deduce probabilities for certain events
relating to the SLE path ~.

6.1 Hitting probabilities at 0 for the Bessel flow

Let B be a real Brownian motion starting from 0 and fix a € (0,00). Consider for each
x € R\ {0} the integral equation

Xy(z) =2+ B, + /0 %(m)ds. (12)

By standard results for ordinary differential equations, there exists ((z) € (0,00) and a
continuous path (X;(x))i<¢(z) such that (12) holds for all ¢ € [0,((z)) and, if {(z) < oo,
then X;(z) — 0 as t 1 {(x). Moreover, ((x) and (X;(x));<¢(;) are uniquely determined
by these properties. Furthermore, for z,y € (0,00) with x < y, we have ((z) < ((y) and
Xi(z) < Xy(y) for all t < {(x). (This can be shown by reversing time and using uniqueness
of solutions for ordinary differential equations.)

Each of the processes (X;(2))t<¢(s) is @ Bessel process. Note that they are all constructed
from a single Brownian motion. We call the whole family of processes the Bessel flow. In
cases where the lifetime ((x) is finite, the solution X;(z) hits the point 0 where the drift is
singular at time ((z), otherwise X;(z) has infinite lifetime and never hits 0. The following
scaling property may be established by the same argument used for Proposition 5.3: fix
r € (0,00) and set {(z) = r~2¢(rz) and X,(z) = r~*X,2,(rz), then the family of processes
(Xt(x))t<5(w) for z € R\ {0} is also a Bessel flow.

Proposition 6.1. Let z,y € (0,00) with z < y. Then

(a) for a € (0,1/4], we have
P(¢(z) < ((y) <o0)=1;

(b) forae€ (1/4,1/2), we have

P(C(e) <00) =1, P(C(z) < C(y)) = (y - )

where ¢ is given by

b du
o) = | i 60 =1
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(c) fora € [1/2,00), we have
P(¢(z) < o0) =0

and indeed, for a € (1/2,00),

P <iant(:1c) > 0) =1.

0

Proof. Fix x > 0 and write X; = X;(z) and ¢ = ((x). For r € (0,00) define a stopping
time

T(r)=inf{t € [0,() : Xy =r}.

Fix r, R € (0,00) and assume that 0 < r < z < R. Write S = T(r) A T(R). Note that
T(r) < (on{¢ < oo}. Also, Xy > B+ x for all t < (, so T(R) < oo almost surely
on {¢ = oo}. In particular, S < oo almost surely. Assume for now that a # 1/2. Set
M; = X}7%* for t < (. Note that M?* is uniformly bounded. By It&’s formula

dM; = (1 — 2a)X;2*dX; — a(1l — 2a)X;?* 'dt = (1 — 2a)X; >*dB,.
Hence M? is a bounded martingale and by optional stopping
2172 = My = E(Ms) = r'"*P(Xs = r) + R">*P(Xs = R). (13)

Note that as r | 0 we have {Xg = R} 1 {T(R) < ¢} and so P(Xs = R) = P(T'(R) < ().
Similarly, P(Xg = r) — P(T(r) < o0) as R — oo. For a € (0,1/2), we can let r — 0 in
(13) to obtain

P(T(R) < () = (z/R)"™™.

Then, letting R — oo, we deduce that P(¢ = co) = 0. For a € (1/2,00), we can let R — oo
in (13) to obtain
P(T(r) < 00) = (r/z)*""

which implies P (inf;5o X;(«) > 0) = 1 and hence P(¢ = co) = 1. In the case a = 1/2, we
instead set M; = log X; and argue as above to obtain

logz = P(Xg =r)logr +P(Xs = R)logR.
This forces P(Xg =r) — 0 as r — 0 and so
P(T(R) < () =1.

Since T'(R) — oo as R — o0, it follows that P({ = o0) = 1.
Assume from now on that a € (0,1/2). It remains to show for 0 < z < y that

1, ifa<1/4

P(¢ <((y) = {¢(u) if a > 1/4.
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Define for 6 € [0, 1]

! du
x(0) = /9 ur e (] — y)2a’

Note that x is continuous on [0,1] as a map into [0, oo, with x(0) < oo for a € (1/4,1/2)
and x(0) = oo for a € (0,1/4]. Note also that x is C? on (0,1), with

1—-2a a

v +2 (152 - 1) e =o

Fix y > z and write Y; = X;(y). For t < (, define R, = Y; — Xy, 6, = R;/Y; and Ny = x(6,).
By It6’s formula

CLtht 0t 2 1—2a a Ht
=%y @ (Y) 6, 1-6)" 1"

SO .
X (et)etdBt

1
dNy = X' (6:)d0; + = x"(0;)db,db, = —
2 Y;

Hence (N; : t < () is a local martingale.
Consider the random variables

z) = —at, n(T) = —dt, n>=1.
o X7 T(a-n+1g) Xi

By the strong Markov property (of the driving Brownian motion), the random variables
(An(z) : n € N) are independent. By the scaling property, they all have the same distribu-
tion. Hence, since A;(z) > 0 almost surely, we must have A(z) = oo almost surely.

Every continuous local martingale is a time-change of Brownian motion. Hence, since
N is non-negative, both N; and the quadratic variation

t .1 202
X 05 05
[N]t=/0 7(}/2 ds

8

converge to a finite limit almost surely as ¢ 1 (. Hence #; must also converge as ¢t 1 (.
If ¢ < ((y), then §; = 1 so No = 0. If ( = ((y), then the conjunction of A(y) = oo
and [N]; < oo forces §; — 0 as ¢t 1T (. In the case a € (0,1/4], this would imply that
N; = x(6;) — oo as t 1 ¢, a contradiction, so P({ < ((y)) = 1. On the other hand, for
a € (1/4,1/2), the process N¢ is a bounded martingale so by optional stopping

y (y : ) — No = E(V,) = x(0)P(C = C(3)).

O

A variation of the calculation for P({(z) < ((y)) allows us to compute P({(z) < {(—y)).
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Proposition 6.2. Let z,y € (0,00). Then for a € (0,1/2) we have

Pcta) < (-0 =v (1)
where 1 is given by

Y(0) = C/O ﬁa P(1) = 1.

Proof. Note that 1 is continuous and increasing on [0, 1] with ¢(0) = 0 and ¥(1) = 1. Also
¥ is C? on (0,1) with
1 1
"0)+2a |- ———]¢'(0) =0.
9(0) +20 (5 - 125) 00)

Write X; = Xy(x) and Y; = X;(—y) and set T'= ((x) A{(—y). Fort < T set R, = X; + Y}
and ¢, = Y;/R;. Define a process Q = (Q¢)i>0 by setting @Q; = ¢(0rn;). Then Q is
continuous and uniformly bounded. Note that Q7 = 67 and that 67 = 1 if {(z) < ((—y)
and Oy = 0 if {(—y) < {(x). By Ito’s formula, for t < T,

aR; a (1 1 dB;
dR, = —~dt, dfy=— (- — dt — —*
Hy Xy, = ' R (et 1— 0t>

SO
1 /!
th - wl(gt)dgt + §w”(0t)d9td0t e —

Hence (@) is a bounded martingale. By optional stopping

P(((z) < C(—y)) =P(0r = 1) = E(Qr) = Qo = ¥(6o) = ¢ (x ijr y> :

6.2 Hitting probabilities for SLE(x) on the real line

Fix k € [0,00) and a real Brownian motion B starting from 0. Set & = —+/kB;. Then
¢ = (&)i>0 is a Brownian motion of diffusivity x. Recall that £ determines by Loewner’s
theorem a flow of conformal isomorphisms g; : H; — H and that by the Rohde—Schramm
theorem there is a continuous random process v in H starting from 0 such that H; is the
unbounded connected component of H\ (0, ¢] for all ¢. Then + is a realization of SLE (k).
Recall also that each map g¢; extends analytically to the reflected domain H; and that for
all z € C\ {0} we have
2

11(2) = ——, t<((z

gt( ) gt(z) _ gt <( )
where ((z) =inf{t > 0: z ¢ H;}. Moreover if ((z) < oo then g;(z) — & — 0 as t — ((z).
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For x € R\ {0}, set (*(z) = ((zv/k) and define for ¢ < (*(z)

(@) — VR &

N

Set @ = 2/k. Then
a

Xs(x)

and X¢(z) = 0 as t — (*(z) on {(*(z) < oo}. So the family of processes (X;(z))i<¢+() is
the Bessel flow of parameter a driven by B. The following result is a direct translation of
Propositions 6.1 and 6.2. (Note that, since ((z) = (*(z/v/k), the appearance of the ratio
y/(x + y) below is the result of a cancellation by 1/4/k.)

ds

t
Xt(x):m+Bt+/
0

Proposition 6.3. Let z,y € (0,00). Then

(a) for k € [0,4], we have
P(¢(z) < o00) =0

and indeed, for k < 4,

P <inf(gt(x) —&) > 0) —1;

>0

(b) for k € (4,8), we have
P(((z) < oc0) =1

and

_ Y _ _ Y
Po(a) < a0 =0 (). P << =v (L)
where ¢ and 1 are defined in Propositions 6.1 and 6.2;

(c) for k € [8,00), we have

P(¢(z) < {(z +y) < o0) = 1.

For z € (0,00) and ¢ > 0, we have ¢t < ((x) if and only if H; is a neighbourhood of z in
H. This is true in turn if and only if [0, ¢] N [z, 00) = (. Hence

Clz)=inf{t > 0:v € [z,00)}

and, for y € (0,00), 7 hits [z,z + y) if and only if {(z) < {(z + y). We make a second
translation of Propositions 6.1 and 6.2 in terms of the SLE(k) path 7 itself.

Proposition 6.4. Let v be an SLE(k). Then

(a) for k € [0,4], we have v][0,00) "R = {0} almost surely;
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(b) for k € (4,8) and all z,y € (0,00), v hits both [x,00) and (—oo, —y| almost surely,
and

B it r.a+) = 6 () . Pl s [, 0) defore (o0, —a]) = (L)

Tty T +y

(c) for k € [8,00), we have R C [0, 00) almost surely.

Proof. For k € [0,4], we know that 79 = 0 and ~ does not hit (—oo, —1/n] or [1/n, o)
almost surely, for all n € N. This implies (a). Statement (b) is a direct translation of the
corresponding statement in Proposition 6.3. For x € (8,00), we know that almost surely,
for all rationals z,y € (0,00), 1 € [z,z + y) for some ¢t > 0. Since 7 is continuous, this
implies that [0,00) C [0, 00) almost surely, and (c) follows by symmetry. O
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