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Modelling the climate system

Origins of stochasticity in the climate system.

Case Study I: Stochastic dynamics of sea-surface temperature.

Case Study II: Stochastic dynamics of sea-surface winds.
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Introduction: Stochastic Climate Models

Atmosphere and ocean flows generally unsteady; often turbulent
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Natural to model dynamics as interaction betweendeterministic and

random (turbulent) parts of flow⇒ stochastic climate models
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Why is Climate Complex? Coupling Across Scales

Climate system displays variability over broad range of space and time

scales

From Saltzman, 2002
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Why is Climate Complex? Coupling Across Systems

From IPCC AR4 http://www.ipcc.ch
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Why is Climate Complex? Feedback Loops

Fromhttp://eesc.columbia.edu/courses/ees/slides/climate/
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Why is Climate Complex? Non-Stationarity
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Why is Climate Complex? Data: Too Much & Not Enough
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From ERA-40 Project Report Series 19
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Modelling the Climate System

Climate models represent physical (+ biogeochemical) processes, typically

through consideration ofbudgetsof “conserved quantities”

d

dt
quantity= local change + transport= source - sink
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Modelling the Climate System

Climate models represent physical (+ biogeochemical) processes, typically

through consideration ofbudgetsof “conserved quantities”

d

dt
quantity= local change + transport= source - sink

Often the hardest part of the modelling process is representing sources and

sinks in terms of state variables

Sources and sinks may include contributions from state variables on

unresolved scales(as we’ll see)

Most fundamental conservation laws:

mass

energy

momentum
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Modelling the Climate System

Conservation ofenergy(thermodynamics): processes
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Modelling the Climate System

Conservation ofenergy(thermodynamics): processes

radiation (scattering, reflection, absorption)

conduction

advection (transport by flow; coupled to momentum)

phase changes of water

surface fluxes (e.g. air-sea)

friction (dissipation)

Conservation ofmomentum (mechanics): processes

gravity

pressure gradients (coupled with thermodynamics)

coriolis and centripetal force (rotating Earth)

advection

surface fluxes

friction (internal and interfacial)
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Modelling the Climate System

Conservation ofmaterial substances(chemistry, biology, etc.): processes
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Modelling the Climate System

Conservation ofmaterial substances(chemistry, biology, etc.): processes

water; coupled to energetics (through phase changes, radiative

transport), momentum (through transport and stratification)

atmospheric gases & aerosols (e.g. CO2, CH4); coupled to energetics

(radiative transfer), momentum (transport)

ocean salinity; coupled to momentum (transport and stratification)

“biomass"; coupled to atmospheric gases (e.g. photosynthesis),

energetics (radiative budget), water (evapotranspiration)

In general, these budgets are nonlinear in the state variables

In particular, advective processes depend both on the flow (velocity state

variable) and the quantity being transported

⇒ strong physical coupling of processes across different space and time scales
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Coupling Across Scales

Generic dynamical equation for climate state (projected onto some basis so

PDEs expressed as ODEs)
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Generic dynamical equation for climate state (projected onto some basis so

PDEs expressed as ODEs)

dz

dt
= Lz + N(z, z) + F

Decompose state into “slow” and “fast” (resp. “climate" and“weather")

z = (x,y)

⇒ coupled dynamics

d

dt
x = Lxxx + Lxyy + N (x)

xx
(x,x) + N (x)

xy
(x,y) + N (x)

yy
(y,y) + Fx

d

dt
y = Lyxx + Lyyy + N (y)

xx
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Coupling Across Scales

Define “averaging" to project on “slow” dynamics:
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Coupling Across Scales

Define “averaging" to project on “slow” dynamics:

z = (x,y) = (x,0)

“Upscale” influence of “fast" variables on resolved flow remains

(generalisation of classical turbulence “closure problem”)

dx

dt
= Lxxx + N (x)

xx
(x,x) + N

(x)
yy (y,y) + Fx

“Eddy covariance" terms appear as source/sinks for resolved flow

When modelling slower components of system, don’t want (need?) to

explicitly simulate faster components

⇒ “subgrid-scale parameterisations” (closure)
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Coupling Across Scales

From von Storch and Zwiers, 1999
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Origins of Stochasticity: Multiscale Dynamics

Analogy with statistical mechanics; can talk about macroscopic variables

like “pressure” and “internal energy” of gas without accounting for

microscopic state of each molecule
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Origins of Stochasticity: Multiscale Dynamics

Analogy with statistical mechanics; can talk about macroscopic variables

like “pressure” and “internal energy” of gas without accounting for

microscopic state of each molecule

In “thermodynamic limit" of infinite separation between fast and slow

dynamics, upscale influence of fast on slow is a deterministic function of

resolved variables

In absence of infinite scale separation, more appropriate toconsider upscale

influence asrandom process conditioned on resolved variables:

N
(x)
yy (y,y) = u ∼ p(u|x)

“coarse graining" may involve scale separations in space, time, or both

coarse-graining results not only in unresolvedscales, but also unresolved

processes(e.g. internal gravity waves, convection, cloud mircophysics)
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Origins of Stochasticity: Multiscale Dynamics

Formally write “weather-climate" dynamics as multiscale system

dx

dt
= f(x,y, t)

dy

dt
=

1

ǫ
g(x,y, t)
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x = f(x, t)

Exploring the Weather-Climate Connection:ProbabilisticClimate Dynamics Part II: Stochastic Climate Models – p. 17/40



Origins of Stochasticity: Multiscale Dynamics

Formally write “weather-climate" dynamics as multiscale system

dx

dt
= f(x,y, t)

dy

dt
=

1

ǫ
g(x,y, t)

Conditional invariant measureµx(y) ⇒ hierarchy of approximations

1. Averaging (deterministic) d

dt
x = f(x, t)

2. Central Limit Theorem (stochastic):x(t) = x(t) +
√

ǫζ(t)

d

dt
ζ = [Df(x)]ζ + σ(x)Ẇ

Exploring the Weather-Climate Connection:ProbabilisticClimate Dynamics Part II: Stochastic Climate Models – p. 17/40



Origins of Stochasticity: Multiscale Dynamics

Formally write “weather-climate" dynamics as multiscale system

dx

dt
= f(x,y, t)

dy

dt
=

1

ǫ
g(x,y, t)

Conditional invariant measureµx(y) ⇒ hierarchy of approximations

1. Averaging (deterministic) d

dt
x = f(x, t)

2. Central Limit Theorem (stochastic):x(t) = x(t) +
√

ǫζ(t)

d

dt
ζ = [Df(x)]ζ + σ(x)Ẇ

3. “Hasselmann approximation” (stochastic)

d

dt
x = f(x) +

√
ǫσ(x) ◦ Ẇ
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Origins of Stochasticity: Multiscale Dynamics

Special case of averaging considered by Majda, Timofeyev, and

Vanden-Eijnden (MTV Theory)

d

dt
x = f0(x,x) +

1

ǫ
f1(x,y)

d

dt
y =

1

ǫ
g0(x,y) +

1

ǫ2
g1(y,y)
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x = f0(x,x) +

1

ǫ
f1(x,y)

d

dt
y =

1

ǫ
g0(x,y) +

1

ǫ2
g1(y,y)

⇒ semi-analytical reduced model

In many (most?) climate applications,ǫ is not small
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Origins of Stochasticity: Multiscale Dynamics

Special case of averaging considered by Majda, Timofeyev, and

Vanden-Eijnden (MTV Theory)

d

dt
x = f0(x,x) +

1

ǫ
f1(x,y)

d

dt
y =

1

ǫ
g0(x,y) +

1

ǫ2
g1(y,y)

⇒ semi-analytical reduced model

In many (most?) climate applications,ǫ is not small

Fast/slow decomposition not unique;

“one person’s noise is another person’s signal”
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Origins of Stochasticity: Model Uncertainty

All models of climate (or subsystems) contain both
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Monte-Carlo orensembleforecast approach in which pdf is
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Origins of Stochasticity: Model Uncertainty

All models of climate (or subsystems) contain both

model error, and

poorly constrained (sometimes unphysical) parameters

Ideally: given pdf of parameters and model structure, obtain pdf of

climate state

Reality:

full climate state pdf cannot be computed; must adopt

Monte-Carlo orensembleforecast approach in which pdf is

sampled; “curse of dimensionality”

parameter pdfs generally not well knowna priori

Building large ensembles computationally expensive
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Parameter Uncertainty: Ensemble Prediction

climateprediction.net uses idle private CPUs to integrate

ensembles with different parameter settings

http://www.climateprediction.net
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Initial Condition Uncertainty: Ensemble Forecasting

Model uncertainties can also include initial conditions

http://chrs.web.uci.edu/images/ensemble_large_atmo.jpg

Exploring the Weather-Climate Connection:ProbabilisticClimate Dynamics Part II: Stochastic Climate Models – p. 21/40



Stochastic Climate Models: Case Studies

Two distinct end-member approaches to modelling pdfs of climate

variables:
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Stochastic Climate Models: Case Studies

Two distinct end-member approaches to modelling pdfs of climate

variables:

running fully complex general circulation models

considering physically-motivated idealised models

First approach has benefit of being more realistic, but is also much

more complex; mechanisms are not always clear

Second approach not always quantitatively accurate, but important

for developing understanding and elucidating mechanism

Will now consider two “idealised” stochastic models for:

stochastic dynamics of sea-surface temperatures

stochastic dynamics of sea-surface winds
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Sea Surface Temperatures: Why Should We Care?

Air/Sea Exchange
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exchanging momentum, energy, freshwater, and gases

surface fluxes influence and are influenced by SST

Stratification

ocean generally stably stratified (density increases with depth)

communication between surface and deeper ocean determinedby

strength of stratification: in general, higher SST⇒ higher stratification

Biological Processes

biological activity in upper sunlight part of ocean important part of

global climate system
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Sea Surface Temperatures: Why Should We Care?

Air/Sea Exchange

ocean and atmosphere interact through respective boundarylayers,

exchanging momentum, energy, freshwater, and gases

surface fluxes influence and are influenced by SST

Stratification

ocean generally stably stratified (density increases with depth)

communication between surface and deeper ocean determinedby

strength of stratification: in general, higher SST⇒ higher stratification

Biological Processes

biological activity in upper sunlight part of ocean important part of

global climate system

rates of biological activity sensitive to ocean temperature
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Bulk Surface Mixed Layer Model

Dynamics of local SST:

∂T

∂t
= −v·∇T+

Fsh(t)

h(t)
+

Flh(t)

h(t)
+

w′T ′
∣

∣

z=h
(t)

h(t)
+

Fsw(t)

h(t)
−σ(ǫT 4−ǫaT

4
a )

where
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Bulk Surface Mixed Layer Model

Dynamics of local SST:

∂T

∂t
= −v·∇T+

Fsh(t)

h(t)
+

Flh(t)

h(t)
+

w′T ′
∣

∣

z=h
(t)

h(t)
+

Fsw(t)

h(t)
−σ(ǫT 4−ǫaT

4
a )

where
T sea-surface temperature (SST)

−v · ∇T horizontal advective tendency

h(t) mixed layer (ML) depth

Fsh(t) = ch||u||(Ta − T ) surface “sensible heat” flux

Flh(t) = ch||u||(qa − qs(T )) surface “latent heat” flux

w′T ′
∣

∣

z=h
(t) turbulent fluxes at ML base

Fsw(t) surface shortwave (solar) heating

σ(ǫT 4 − ǫaT
4
a ) net surface longwave cooling
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Local stochastic model

Simplifying assumptions (Frankignoul& Hasselmann 1977):
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Local stochastic model

Simplifying assumptions (Frankignoul& Hasselmann 1977):

dynamics are local

linearised dynamics of small perturbationsT ′ around mean

“fast” atmospheric fluxes represented as white noise

⇒ simple Ornstein-Uhlenbeck process

dT ′

dt
= −1

τ
T ′ + γẆ

with spectrum

E{T ′(ω)2} =
γ2τ2

2π(1 + ω2τ2)
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Local stochastic model

Simplifying assumptions (Frankignoul& Hasselmann 1977):

dynamics are local

linearised dynamics of small perturbationsT ′ around mean

“fast” atmospheric fluxes represented as white noise

⇒ simple Ornstein-Uhlenbeck process

dT ′

dt
= −1

τ
T ′ + γẆ

with spectrum

E{T ′(ω)2} =
γ2τ2

2π(1 + ω2τ2)

“Slow” local surface ocean dynamics⇒ red-noise response to “fast”

atmospheric forcing
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What do we learn about SST variability?

Observationally, SST variability “red” and fluxes are “white”

From Frankignoul & HasselmannTellus1977
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What do we learn about SST variability?

Observationally, SST variability “red” and fluxes are “white”

From Frankignoul & HasselmannTellus1977

Linear stochastic model⇒ simple null hypothesis for observed variability

Generalisation with multiplicative noise effects explains slight

non-Gaussianity of SST

(c.f. Sura, Newman, & AlexanderJ. Phys. Oceanogr., 2006)
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Sea Surface Winds: Why Should We Care?

Air/Sea Exchange
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Air/Sea Exchange

surface fluxes depend on surface winds, in general nonlinearly

ocean currents largely driven by surface winds

Sea State

sea state important for shipping, recreation

determined by both local and remote winds

Power Generation
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Sea Surface Winds: Why Should We Care?

Air/Sea Exchange

surface fluxes depend on surface winds, in general nonlinearly

ocean currents largely driven by surface winds

Sea State

sea state important for shipping, recreation

determined by both local and remote winds

Power Generation

wind power potentially significant source of energy

generation rate scales as cube of wind speed; extreme events

important
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Vector Wind Moments
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Mean and Skewness of Vector Wind

Joint pdfs of mean and skew for zonal and meridional winds
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Wind Speed Moments
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Wind Speed pdf: Weibull distribution

The pdf of wind speedw has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:
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Wind Speed pdf: Weibull distribution

The pdf of wind speedw has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:
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a is the scaleparameter (pdf centre)
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Wind Speed pdf: Weibull distribution

The pdf of wind speedw has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:
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Wind Speed pdf: Weibull distribution

The pdf of wind speedw has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:
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a is the scaleparameter (pdf centre)

b is the shapeparameter (pdf tilt)

pw(w) is unimodal
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Wind Speed pdfs: Observed

Observed speed moments fall around Weibull curve
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Boundary Layer Dynamics

Horizontal momentum equations:
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1
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∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z

Momentum tendency due to:
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z

Momentum tendency due to:

advection (transport by flow; secondary importance on daily

timescales )
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z

Momentum tendency due to:

advection (transport by flow; secondary importance on daily

timescales )

pressure gradient force
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z

Momentum tendency due to:

advection (transport by flow; secondary importance on daily

timescales )

pressure gradient force

Coriolis force

turbulent momentum flux (in vertical)

Integrated momentum budget over boundary layer depthh:
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p − f k̂ × u− 1

ρ

∂(ρu′u′
3
)

∂z

Momentum tendency due to:

advection (transport by flow; secondary importance on daily

timescales )

pressure gradient force

Coriolis force

turbulent momentum flux (in vertical)

Integrated momentum budget over boundary layer depthh:

du

dt
= −1

ρ
∇p − f k̂ × u +

1

h

(

u′u′
3
(0) − u′u′

3
(h)

)
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Surface Wind Stress

Surface wind stress is turbulent momentum flux across air/sea

interface:
τs = ρau′u′

3
(0)
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Surface Wind Stress

Surface wind stress is turbulent momentum flux across air/sea

interface:
τs = ρau′u′

3
(0)

where

u = along-mean wind component

v = cross-mean wind component

u = (u, v)

u3 = vertical wind component
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Surface Wind Stress

Surface wind stress is turbulent momentum flux across air/sea

interface:
τs = ρau′u′

3
(0)

where

u = along-mean wind component

v = cross-mean wind component

u = (u, v)

u3 = vertical wind component

Flux parametrised in terms ofu by bulk drag formula:

τs = ρacdwu

wherew =‖ u ‖ is the wind speed.
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Surface Momentum Budget

To close momentum budget, need parametrisation of turbulent

momentum flux atz = h
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Surface Momentum Budget

To close momentum budget, need parametrisation of turbulent

momentum flux atz = h

Use fixed “entrainment velocity”We

u′u′
3
(h) = We(U − u)

⇒ Surface layer momentum budget
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Surface Momentum Budget

To close momentum budget, need parametrisation of turbulent

momentum flux atz = h

Use fixed “entrainment velocity”We

u′u′
3
(h) = We(U − u)

⇒ Surface layer momentum budget

du

dt
= −1

ρ
∇p − f k̂ × u − cd

h
wu +

We

h
(U − u)

= Π− cd

h
wu− We

h
u
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Surface Momentum Budget

To close momentum budget, need parametrisation of turbulent

momentum flux atz = h

Use fixed “entrainment velocity”We

u′u′
3
(h) = We(U − u)

⇒ Surface layer momentum budget

du

dt
= −1

ρ
∇p − f k̂ × u − cd

h
wu +

We

h
(U − u)

= Π− cd

h
wu− We

h
u

where

Π = −1

ρ
∇p − f k̂ × u +

We

h
U

Exploring the Weather-Climate Connection:ProbabilisticClimate Dynamics Part II: Stochastic Climate Models – p. 35/40



Mechanistic Model: SDE

DecomposingΠ into mean and fluctuations:

Πu(t) = 〈Πu〉 + σẆ1(t)

Πv(t) = σẆ2(t)
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Mechanistic Model: SDE

DecomposingΠ into mean and fluctuations:

Πu(t) = 〈Πu〉 + σẆ1(t)

Πv(t) = σẆ2(t)

whereẆi is Gaussian white noise
〈

Ẇi(t1)Ẇj(t2)
〉

= δijδ(t1 − t2)
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Mechanistic Model: SDE

DecomposingΠ into mean and fluctuations:

Πu(t) = 〈Πu〉 + σẆ1(t)

Πv(t) = σẆ2(t)

whereẆi is Gaussian white noise
〈

Ẇi(t1)Ẇj(t2)
〉

= δijδ(t1 − t2)

we obtain stochastic differential equation

du

dt
= 〈Πu〉 −

cd

h
wu − We

h
u + σẆ1

dv

dt
= −cd

h
wv − We

h
v + σẆ2
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Mechanistic Model: pdf

Solution of associated Fokker-Planck equation for stationary pdf:

puv(u, v) = N1 exp

(

2

σ2

{

〈Πu〉u − We

2h
(u2 + v2)

− 1

h

∫

√
u2+v2

0

cd(w
′)w′2 dw′

})
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Mechanistic Model: pdf

Solution of associated Fokker-Planck equation for stationary pdf:

puv(u, v) = N1 exp

(

2

σ2

{

〈Πu〉u − We

2h
(u2 + v2)

− 1

h

∫

√
u2+v2

0

cd(w
′)w′2 dw′

})

Changing to polar coordinates and integrating over angle gives wind

speed pdf:

pw(w) = NwI0

(

2 〈Πu〉w

σ2

)

exp

(

− 2

σ2

{

We

2h
w2 +

1

h

∫ w

0

cd(w
′)w′2 dw′

})
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Mechanistic Model: Predictions
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Mechanistic Model: Comparison with Observations
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What Did We Learn About Sea Surface Winds?

Sea surface wind pdfs characterised by relationships between

moments
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What Did We Learn About Sea Surface Winds?

Sea surface wind pdfs characterised by relationships between

moments

These moment relationships reflect physical processes producing

distributions

Idealised stochastic models can be constructed from basic physical

principles to (qualitatively) explain physical origin of pdf structure

More accurate quantitative simulation requires a more sophisticated

model; qualitative utility of relatively simple model suggests it

captures essential physics
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