On differentiability of a flow for an SDE with discontinuous drift

Olga Aryasova
(joint work with Andrey Pilipenko)

Institute of Geophysics,
National Academy of Sciences of Ukraine,
Palladin av. 32, 03680, Kiev, Ukraine
Consider an SDE

\[
\begin{aligned}
\frac{d\varphi_t(x)}{dt} &= a(\varphi_t(x))dt + \sigma(\varphi_t(x))dw(t), \\
\varphi_0(x) &= x,
\end{aligned}
\]

where \(x \in \mathbb{R}^d \), \((w(t))_{t \geq 0}\) is a \(d \)-dimensional Wiener process,

Problem

Let \(t, \omega \) be fixed. We study the differentiability of the mapping
\(x \mapsto \varphi_t(x, \omega) \) from \(\mathbb{R}^d \) to \(\mathbb{R}^d \).
Example 1

Let $a = (a^1, \ldots, a^d) \in C^1_b(\mathbb{R}^d)$

\[
\begin{align*}
 d\varphi_t(x) &= a(\varphi_t(x))dt, \\
 \varphi_0(x) &= x,
\end{align*}
\]

where $x \in \mathbb{R}^d$. Then for fixed t, the mapping $x \mapsto \varphi_t(x)$ is a diffeomorphism.

The derivative satisfies the differential equation

\[
\nabla \varphi_t(x) = E + \int_0^t \nabla a(\varphi_s(x)) \nabla \varphi_s(x) ds,
\]

where E is a $d \times d$-identity matrix, $\nabla a(x)$ is a $d \times d$- matrix and

\[
(\nabla a(x))^{ij} = \frac{\partial a^i(x)}{\partial x_j}.
\]
Example 2

Let $d = 1$. Consider $a(x) = \text{sign } x$. Then

$$\varphi_t(x) = x + \int_0^t \text{sign } \varphi_s(x) \, ds.$$

For all $t > 0$, the mapping $x \mapsto \varphi_t(x)$ is discontinuous at the point $x_0 = 0$ but it is an injection.
Example 3

Let \(a(x) = -\text{sign} x \). Then for all \(t > 0 \), the mapping \(x \mapsto \varphi_t(x) \) is continuous but it is not an injection.
Stochastic differential equations

\[
\begin{cases}
 d\varphi_t(x) = a(\varphi_t(x))dt + \sigma(\varphi_t(x))dw(t), \\
 \varphi_0(x) = x.
\end{cases}
\]

- \(\{a, \sigma\} \subset C_b^{1,\varepsilon}\). There exists a flow of diffeomorphisms. The derivative \(\nabla \varphi_t(x) =: \psi_t(x)\) is a solution of equation
 \[d\psi_t(x) = \nabla a(\varphi_t(x))\psi_t(x)dt + \nabla \sigma(\varphi_t(x))\psi_t(x)dw(t).\]

- \(\{a, \sigma\} \subset Lip\).
 - there exists a flow of homeomorphisms [Kunita, 1990];
 - there exists a generalized derivative [Bouleau & Hirsch, 1991].

- if \(\sigma \in C^2\) and it is non-degenerate, and \(a \in Höl\) then there exists a flow of diffeomorphisms [Flandoli et al., 2010].
One-dimensional case

\[
\begin{aligned}
\begin{cases}
\frac{d\varphi_t(x)}{dt} &= a(\varphi_t(x))dt + dw(t), \\
\varphi_0(x) &= x,
\end{cases}
\end{aligned}
\tag{1}
\]

where \(a(x), x \in \mathbb{R}\), is measurable bounded function, \((w(t))_{t \geq 0}\) is a one-dimensional Wiener process.

For each \(x \in \mathbb{R}\) there exists a unique strong solution to (1) (c. f. [Zvonkin, 1974]).
Heuristic approach

\[
\begin{aligned}
 d\varphi_t(x) &= a(\varphi_t(x))dt + dw(t), \\
 \varphi_0(x) &= x.
\end{aligned}
\]

Suppose that \(a \in C^1_b \). Then

\[
\psi_t(x) = (\varphi_t(x))'_x
\]

satisfies the equation

\[
d\psi_t(x) = a'(\varphi_t(x))\psi_t(x)dt.
\]
Heuristic approach

\[\psi_t(x) = \exp \left\{ \int_0^t a'(\varphi_s(x)) ds \right\}. \]

By the occupation times formula

\[\psi_t(x) = \exp \left\{ \int_{\mathbb{R}} L_z^{\varphi(x)}(t) a'(z) dz \right\} = \exp \left\{ \int_{\mathbb{R}} L_z^{\varphi(x)}(t) da(z) \right\}, \]

where \(L_z^{\varphi(x)}(t) \) is a local time of the process \((\varphi_t(x))_{t \geq 0}\) at the point \(z \in \mathbb{R} \) that is defined by the formula

\[L_z^{\varphi(x)}(t) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t 1_{[z, z+\varepsilon)}(\varphi_s(x)) ds, \quad t \geq 0. \]
\begin{align*}
\left\{ \begin{array}{l}
d\varphi_t(x) = a(\varphi_t(x))dt + dw(t), \\
\varphi_0(x) = x.
\end{array} \right.
\end{align*}

(A) a has bounded variation on each interval of \mathbb{R};

(B) for all $x \in \mathbb{R}$
\[|a(x)|^2 \leq C(1 + |x|^2);\]

Let $W_{p,loc}^1(\mathbb{R})$ be a set of functions on \mathbb{R} belonging to $W_p^1([c, d]), c < d$.

Olga Aryasova (joint work with Andrey Pilipenko)
On differentiability of a flow for an SDE with discontinuous drift
Theorem 1 [Aryasova & Pilipenko, 2012]

1) For all \(t \geq 0 \),

\[
P\left\{ \forall p \geq 1 : \varphi_t(\cdot) \in W_{p,loc}^1(\mathbb{R}) \right\} = 1.
\]

2) For all \(t \geq 0 \) a generalized derivative \(\nabla \varphi_t(x) \) is defined by the formula

\[
\nabla \varphi_t(x) = \exp \left\{ \int_{\mathbb{R}} L_{\varphi(x)}(t) da(z) \right\},
\]

where \((L_{\varphi(x)}(t))_{t \geq 0} \) is a local time of the process \(\varphi(x) \) at the point \(z \).

3) For any fixed \(t, \omega \), the mapping \(x \mapsto \varphi_t(x) \) is a homeomorphism. Moreover, for all \(\{x_1, x_2\} \in \mathbb{R}, x_1 \neq x_2 \),

\[
P \left\{ \varphi_t(x_1) \neq \varphi_t(x_2), t \geq 0 \right\} = 1.
\]
Example 2

\[
\varphi_t(x) = x + \int_0^t \text{sign} \varphi_s(x) \, ds + w(t).
\]

Example 3

\[
\varphi_t(x) = x - \int_0^t \text{sign} \varphi_s(x) \, ds + w(t).
\]

For fixed \((t, \omega)\), the mapping \(x \mapsto \varphi_t(x, \omega)\) is continuous and it is an injection.
Multidimensional case

\[
\begin{aligned}
d\varphi_t(x) &= a(\varphi_t(x))dt + dw(t), \\
\varphi_0(x) &= x.
\end{aligned}
\]

where \(x \in \mathbb{R}^d \), \((w(t))_{t \geq 0}\) is a \(d \)--dimensional Wiener process,
a = (a^1, \ldots, a^d) is a bounded measurable mapping from \(\mathbb{R}^d \) to \(\mathbb{R}^d \).

According to [Veretennikov, 1981] there exists a unique strong solution to equation (2).
Case of continuous drift vector

Let for all \(i = 1, d \), \(a^i \in C^1_b(\mathbb{R}^d) \). Then

\[
d\nabla \varphi_t(x) = \nabla a(\varphi_t(x)) \nabla \varphi_t(x) dt,
\]

where

\[
\nabla f(x) = \left\| (\nabla f(x))^i_j \right\|_{i,j=1,d}, \quad (\nabla f(x))^i_j = \frac{\partial f^i}{\partial x_j}(x).
\]

\[
\nabla \varphi_t(x) = E + \int_0^t dA_s(\varphi(x)) \nabla \varphi_t(x) dt, \quad (3)
\]

where \(E \) is a \(d \times d \)-identity matrix, \(A_t(\varphi(x)) = \left\| A^i_j \right\|_{i,j=1,d}, \)

\[
A^i_j(\varphi(x)) = \int_0^t \nabla a^i_j(\varphi_s(x)) ds
\]

is a \textbf{homogeneous additive continuous functional} of the process \((\varphi_t(x))_{t \geq 0}\).
Theory of W-functionals by [Dynkin, 1963]

Definition 1

A non-negative function \(A_t(\xi) : [0, \infty) \to \mathbb{R} \) is called a **W-functional** of the process \((\xi(t))_{t \geq 0} \) if it is

- adapted to the filtration \(\mathcal{N}_t = \sigma\{\xi(s) : 0 \leq s \leq t\} \);
- continuous in \(t \);
- homogeneous additive, i.e. for all \(t \geq 0, \ s > 0, \ x \in \mathbb{R} \),

\[
A_{t+s}(\xi) = A_s(\xi) + \theta_s A_t(\xi) \quad P_x - \text{almost surely},
\]

where \(\theta \) is a shift operator.
Theory of W-functionals by [Dynkin, 1963]

Definition 2

For the process \((\xi(t))_{t \geq 0}\) the function

\[f_t(x) = \sup_{x \in \mathbb{R}^d} \mathbb{E}_x A_t(\xi) \]

is called the characteristic of W-functional \(A_t(\xi)\).
Theory of W-functional

Example

\[A_t(\xi) = \int_0^t a(\xi(s)) ds, \]
where \(a \) is a non-negative measurable function.

\[f_t(x) = \mathbb{E}_x \int_0^t a(\xi(s)) ds = \int_{\mathbb{R}^d} \left(\int_0^t p(s, x, y) ds \right) a(y) dy = \int_{\mathbb{R}^d} k(t, x, y) \mu(dy), \]
where \(p(t, x, y) \) is the transition density of the process \((\xi(t))_{t \geq 0}\).

\[\mu(dy) = a(y) dy, \]
\[k(t, x, y) = \int_0^t p(s, x, y) ds. \]
Introduction

One-dimensional case

General case

Theory of W-functional by [Dynkin, 1963]

Theorem 1

The W-functional is defined uniquely by its characteristic.
Theorem 2

Let $A_{n,t}(\xi)$, $n \geq 1$ be non-negative functionals of the process ξ and $f_{n,t}(x) = \mathbb{E}_x A_{n,t}(\xi)$ be their characteristics. Suppose that for each $t > 0$, a function $f_t(x)$ satisfies the condition

$$\lim_{n \to \infty} \sup_{0 \leq u \leq t} \sup_{x \in \mathbb{R}} |f_{n,u}(x) - f_u(x)| = 0.$$

Then $f_t(x)$ is the characteristic of a non-negative W-functional $A_t(\xi)$. Moreover,

$$A_t(\xi) = \lim_{n \to \infty} A_{n,t}(\xi).$$
Let $A_{n,t}(\xi) = \int_0^t a_n(\xi(s))ds$. Then

$$f_t(x) = \int_{\mathbb{R}^d} k(t, x, y)a_n(y)dy,$$

where

$$k(t, x, y) = \int_0^t p(s, x, y)ds,$$

$p(t, x, y)$ is a transition density of the process $(\xi(t))_{t \geq 0}$.

If

$$a_n(x)dx \rightarrow \mu(dx), \ n \rightarrow \infty, \ \text{in some sense},$$

then we can expect the convergence of corresponding characteristics.
Example

Let $d = 1$, $\mu(dy) = \delta_0(y)$, $a_n(x) = \frac{1}{2n} \mathbf{1}_{[-\frac{1}{n}, \frac{1}{n}]}(x)$. Then

$$A_t(\xi) = \lim_{n \to \infty} \frac{1}{2n} \int_0^t \mathbf{1}_{[-\frac{1}{n}, \frac{1}{n}]}(\xi(s)) ds$$

is a local time of the process $(\xi(t))_{t \geq 0}$ at the point 0.
Which functionals can be approximated?

Condition A

The transition density of the process satisfies the inequality

\[C_1 \exp \left\{ -\beta_1 \frac{\|x - y\|^2}{t} \right\} \leq p(t, x, y) \leq C_2 \exp \left\{ -\beta_2 \frac{\|x - y\|^2}{t} \right\} \]

in every domain of the form \(t \in [0, T], x \in \mathbb{R}^d, y \in \mathbb{R}^d \).

The measure \(\mu \) is such that

\[
\lim_{t \to 0} \sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} k(t, x, y) \mu(dy) = 0.
\]
Theorem 3[Aryasova & Pilipenko, 2013]

Let \(a : \mathbb{R}^d \to \mathbb{R}^d \) be such that for all \(1 \leq i, j \leq d \), its generalized derivatives \(\mu^{ij} = \frac{\partial a^i}{\partial x^j} \) are signed measures. Let \(\mu^{ij} = \mu^{ij,+} - \mu^{ij,-} \) be its Hahn-Jordan decomposition. Suppose that measures \(\mu^{ij,+}, \mu^{ij,-} \) satisfy Condition A. Then for any \(p \geq 1 \) the solution to equation (2) is Sobolev differentiable with respect to initial data, and

\[
P \{ \forall t > 0 : \varphi_t(\cdot) \in W^{1}_{p,loc}(\mathbb{R}^d, \mathbb{R}^d) \} = 1.
\]

The matrix of derivatives \(Y_t(x) := \left\| \frac{\partial \varphi_t^i(x)}{\partial x^j} \right\|_{i,j=1,d} \) satisfies the following integral equation

\[
Y_t(x) = E + \int_0^t (dA_s(\varphi(x))) Y_s(x),
\]

where \(E \) is a \(d \times d \)-identity matrix.
Remark

\[A_t(\varphi(x)) = \int_0^t \frac{d\mu}{dx}(\varphi(s)) ds \]

Cambridge Univ. Press.

Mat. Sb. (N.S.) 93(135), 129–149.
Danke für Ihre Aufmerksamkeit