Discretization Error Analysis for Statistical Inverse Problems

Nicole Mücke
(Potsdam)

October 11, 2013
Introduction: Linear Inverse Problems with Random Noise

- fields of application:
 - astronomy (blurred images of the Hubble telescope)
 - econometrics (instrumental variables)
 - financial mathematics (model calibration of the volatility)
 - medical image processing (X-ray tomography)
Introduction: Linear Inverse Problems with Random Noise

- fields of application:
 - astronomy (blurred images of the Hubble telescope)
 - econometrics (instrumental variables)
 - financial mathematics (model calibration of the volatility)
 - medical image processing (X-ray tomography)

- classical inverse problem:
 \(\mathcal{H}_1, \mathcal{H}_2 \) Hilbert spaces (of functions)
 \(A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2 \) linear and bounded
 given the datum \(g \in \mathcal{H}_2 \), find \(f \in \mathcal{H}_1 \) such that

\[
A f = g
\]

(1)
Introduction: Linear Inverse Problems with Random Noise

- fields of application:
 - astronomy (blurred images of the Hubble telescope)
 - econometrics (instrumental variables)
 - financial mathematics (model calibration of the volatility)
 - medical image processing (X-ray tomography)

- classical inverse problem:
 \[H_1, H_2 \text{ Hilbert spaces (of functions)} \]
 \[A : H_1 \rightarrow H_2 \text{ linear and bounded} \]
 given the datum \(g \in H_2 \), find \(f \in H_1 \) such that

\[Af = g \] (1)

- mathematically: to solve inverse problem means to invert operator \(A \)
Example: Differentiation

- consider problem of recovering the derivative of a function
- setting:
 \[\mathcal{H}_1 = H^1([0, 1]) \] Sobolev space of continuous functions with weak derivative in \(L^2([0, 1], dx) \)
 \[\mathcal{H}_2 = L^2([0, 1], dx) \]
Example: Differentiation

- consider problem of recovering the derivative of a function
- setting:
 \[\mathcal{H}_1 = H^1([0, 1]) \] Sobolev space of continuous functions with weak derivative in \(L^2([0, 1], dx) \)
 \[\mathcal{H}_2 = L^2([0, 1], dx) \]
- define \(A : H^1([0, 1]) \rightarrow L^2([0, 1], dx) \) as
 \[(Af)(x) = \int_0^x f(t) \, dt \quad (x \in [0, 1]) \]
- then \(Af = g \iff f = g' \) for any \(g \in \text{Ran}(A) \)
problem: A may not be invertable (problem is ill-posed)

way out: use regularization method to obtain approximate solution
problem: A may not be invertable (problem is ill-posed)

way out: use regularization method to obtain approximate solution

in practise, inverse problems further compounded by some additive noise

$$Y = Af + "noise"$$
problem: A may not be invertable (problem is ill-posed)

way out: use regularization method to obtain approximate solution

in practise, inverse problems further compounded by some additive noise

$Y = Af + "noise"

three frequently used noise models: deterministic, as a Hilbert space process, as a random variable

in what follows, noise is modeled as a r.v. with values in \mathcal{H}_2
problem: A may not be invertable (problem is ill-posed)

way out: use regularization method to obtain approximate solution

in practise, inverse problems further compounded by some additive noise

$$ Y = Af + "noise" $$

three frequently used noise models: deterministic, as a Hilbert space process, as a random variable

in what follows, noise is modeled as a r.v. with values in H_2

study statistical regularization methods, leading to a meaningful reconstruction despite the noise and ill-posedness

The Model: Nonparametric Inverse Regression

- two sets of variables:
 - input space \(\mathcal{X} \subset \mathbb{R}^d \), compact (for simplicity \(d=1 \))
 - output space \(\mathcal{Y} \subseteq [-M, M] \subset \mathbb{R} \)
- build sample space \(\mathcal{Z} = \mathcal{X} \times \mathcal{Y} \)
The Model: Nonparametric Inverse Regression

- two sets of variables:
 - input space $\mathcal{X} \subset \mathbb{R}^d$, compact (for simplicity $d=1$)
 - output space $\mathcal{Y} \subseteq [-M, M] \subset \mathbb{R}$
- build sample space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- $\mathcal{H}_1, \mathcal{H}_2$ Hilbert spaces consisting of functions on \mathcal{X}
- $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ linear, bounded and injective
The Model: Nonparametric Inverse Regression

- two sets of variables:
 - input space $\mathcal{X} \subset \mathbb{R}^d$, compact (for simplicity $d=1$)
 - output space $\mathcal{Y} \subseteq [-M, M] \subset \mathbb{R}$
- build sample space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- $\mathcal{H}_1, \mathcal{H}_2$ Hilbert spaces consisting of functions on \mathcal{X}
- $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ linear, bounded and injective
- unknown Borel probability measure
 \[\rho(x, y) = \rho(y|x) \rho_X(x) \]
- r.v. $(X_i, Y_i) \sim (X, Y)$ drawn i.i.d. according to ρ, $(i = 1, ..., n)$
The Model: Nonparametric Inverse Regression

- two sets of variables:
 - input space $\mathcal{X} \subset \mathbb{R}^d$, compact (for simplicity $d=1$)
 - output space $\mathcal{Y} \subseteq [-M, M] \subset \mathbb{R}$
- build sample space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- $\mathcal{H}_1, \mathcal{H}_2$ Hilbert spaces consisting of functions on \mathcal{X}
- $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ linear, bounded and injective
- unknown Borel probability measure $\rho(x,y) = \rho(y|x) \rho_X(x)$
- r.v. $(X_i, Y_i) \sim (X, Y)$ drawn i.i.d. according to ρ, $(i = 1, ..., n)$
- model

$$ Y_i = (Af)(X_i) + E_i $$

with

$$ (Af)(x) = \mathbb{E}[Y|X = x] = \int_{\mathcal{Y}} y \rho(\mathrm{d}y|x), \quad x \in \mathcal{X} $$

and hence, the unobservable errors $E_i \sim E$ i.i.d. satisfy

$$ \mathbb{E}[E|X = x] = 0 $$
aim: find an estimator \(f_z^\lambda : \mathcal{X} \rightarrow \mathbb{R} \) in \(\mathcal{H}_1 \), based on a given sample \(z \in \mathcal{Z}^n \) and on a parameter \(\lambda_n > 0 \) such that

\[
\rho^\otimes n \left(\| f - f_z^\lambda \|_{\mathcal{H}_1} \leq \delta(n, \eta) \right) \geq 1 - \eta
\]

for some small \(\delta = \delta(n, \eta) \), depending on sample size \(n \) and confidence level \(\eta \in (0, 1) \)

furthermore, \(f_z^\lambda \) should approximate true function \(f \) more accurate as sample size \(n \) grows (consistency)

but some problem:
aim: find an estimator \(f_\lambda^z : \mathcal{X} \rightarrow \mathbb{R} \) in \(\mathcal{H}_1 \), based on a given sample \(z \in \mathcal{Z}^n \) and on a parameter \(\lambda_n > 0 \) such that

\[
\rho^\otimes n \left(\| f - f_\lambda^z \|_{\mathcal{H}_1} \leq \delta(n, \eta) \right) \geq 1 - \eta
\]

for some small \(\delta = \delta(n, \eta) \), depending on sample size \(n \) and confidence level \(\eta \in (0, 1) \)

furthermore, \(f_\lambda^z \) should approximate true function \(f \) more accurate as sample size \(n \) grows (consistency)

but some problem:

need to assume some prior on the problem: restrict class of admissible Borel prob. distributions and consider for given set \(\Omega \subset \mathcal{H}_1 \)

\[
\mathcal{M}^A(\Omega) = \{ \rho : \exists f_\rho \in \Omega : Af_\rho(x) = \mathbb{E}[Y|X = x] \quad \rho x - a.s. \}
\]

usually \(\Omega \) (pre-) compact set
to find such an estimator, we proceed in three steps

1. discretization
2. symmetrization
3. regularization
Assumption:

For any input $x \in \mathcal{X}$ we let the evaluation functional

$$S^A_x : \mathcal{H}_1 \rightarrow \mathbb{R}$$

$$f \mapsto (Af)(x)$$

be uniformly (w.r.t. $x \in \mathcal{X}$) bounded, that is there exists a constant $C > 0$ (independent of $x \in \mathcal{X}$) such that

$$|S^A_x(f)| \leq C||f||_{\mathcal{H}_1}.$$
implies that $Ran(A)$ is a reproducing kernel Hilbert space which can be included in $L^2(\mathcal{X}, \rho_X)$

$$S^A := T \circ A : \mathcal{H}_1 \longrightarrow Ran(A) \hookrightarrow L^2(\mathcal{X}, \rho_X)$$
implies that $\text{Ran}(A)$ is a reproducing kernel Hilbert space which can be included in $L^2(\mathcal{X}, \rho_X)$

$$S^A := T \circ A : \mathcal{H}_1 \longrightarrow \text{Ran}(A) \hookrightarrow L^2(\mathcal{X}, \rho_X)$$

composition $S^A = T \circ A$ is a Carleman operator and we now consider the population case

$$S^A f = g$$
implies that $\text{Ran}(A)$ is a reproducing kernel Hilbert space which can be included in $L^2(\mathcal{X}, \rho_{\mathcal{X}})$

$$S^A := T \circ A : \mathcal{H}_1 \longrightarrow \text{Ran}(A) \hookrightarrow L^2(\mathcal{X}, \rho_{\mathcal{X}})$$

composition $S^A = T \circ A$ is a Carleman operator and we now consider the population case

$$S^Af = g$$

in Caponnetto et al. (2004), a discretization strategy is introduced in the framework of learning theory where $A = Id$ and for inverse problems induced by Carleman operators where the noise is modeled deterministic
implies that $\text{Ran}(A)$ is a reproducing kernel Hilbert space which can be included in $L^2(\mathcal{X}, \rho_X)$

$$S^A := T \circ A : \mathcal{H}_1 \longrightarrow \text{Ran}(A) \hookrightarrow L^2(\mathcal{X}, \rho_X)$$

composition $S^A = T \circ A$ is a Carleman operator and we now consider the population case

$$S^A f = g$$

in Caponnetto et al. (2004), a discretization strategy is introduced in the framework of learning theory where $A = \text{Id}$ and for inverse problems induced by Carleman operators where the noise is modeled deterministic

adapt this approach and develop a framework to deal simultaneously with the perturbation due to the noise and to the random discretization
define sampling operator $S_x^A : \mathcal{H}_1 \rightarrow \mathbb{R}^n$ by

$$(S_x^A f)_i = (Af)(x_i) \quad i = 1, \ldots, n, \ f \in \mathcal{H}_1$$
define sampling operator $S^A_x : \mathcal{H}_1 \rightarrow \mathbb{R}^n$ by

$$(S^A_x f)_i = (Af)(x_i) \quad i = 1, \ldots, n, \ f \in \mathcal{H}_1$$

leads to discretized counterpart (sample case)

$S^A_x f = y$

true prob. measure is replaced by empirical measure on the sample
- aim: want to compare the population case and the sample case
aim: want to compare the population case and the sample case

symmetrized versions are

\[(S^A_x)^* S^A_x f = (S^A_x)^* y\] \hspace{1cm} (2)

and

\[(S^A)^* S^A f = (S^A)^* g\] \hspace{1cm} (3)

advantage: we are now dealing with operators acting on \(H_1\), which can be more easily compared
Concentration Inequalities:

- sample case can be seen as perturbation (due to random discretization) of population case

Proposition:

For $n \in \mathbb{N}$ and $0 < \eta < 1$ it holds with probability at least $1 - \eta$

$$
\| (S_x^A)^* y - (S_x^A)^* g \|_{\mathcal{H}_1} \leq C_1(\eta) \frac{1}{\sqrt{n}}
$$

and

...
Concentration Inequalities:

- sample case can be seen as perturbation (due to random discretization) of population case

Proposition:

For \(n \in \mathbb{N} \) and \(0 < \eta < 1 \) it holds with probability at least \(1 - \eta \)

\[
\| (S^A_x)^* y - (S^A_x)^* g \|_{\mathcal{H}_1} \leq C_1(\eta) \frac{1}{\sqrt{n}}
\]

and

\[
\| (S^A)^* S^A - (S^A_x)^* S^A_x \|_{\mathcal{L}} \leq C_2(\eta) \frac{1}{\sqrt{n}},
\]

for some \(C_1(\eta) > 0, C_2(\eta) > 0 \).

- similar result is obtained in the framework of learning theory \((A = Id)\) in Caponnetto (2004) and Bauer et al. (2009)
in context of inverse problems: regularization leads to algorithms for determining approximate solutions to ill-posed problems which are stable with respect to noise in deterministic setting see e.g. Bertero et al. (1985, 1988), Engl et al. (2000)
Regularization

- in context of inverse problems: regularization leads to algorithms for determining approximate solutions to ill-posed problems which are stable with respect to noise in deterministic setting see e.g. Bertero et al. (1985, 1988), Engl et al. (2000)
- in context of statistics: regularization refers to techniques allowing to avoid overfitting focus mostly on Tikhonov regularization, also called ridge regression/ penalized least squares see e.g. Hastie et al. (2001), Wahba (1990)
key idea: consider family of regularized solutions

\[f_z^\lambda = g_\lambda((S^A_x)^* S^A_x)(S^A_x)^* y \] \hspace{1cm} (4)

depending on the regularization parameter \(\lambda > 0 \) in such a way that
key idea: consider family of regularized solutions

\[f_z^\lambda = g_\lambda ((S_x^A)^* S_x^A) (S_x^A)^* y \] \hspace{1cm} (4)

depending on the regularization parameter \(\lambda > 0 \) in such a way that

1. the map \(t \mapsto g_\lambda (t) \)

approximates the function \(t \mapsto 1/t \) as \(\lambda \to 0 \)

implies: \(g_\lambda ((S_x^A)^* S_x^A) \) is a family of operators approximating the inverse of \((S_x^A)^* S_x^A \) as \(\lambda \to 0 \)
key idea: consider family of regularized solutions

\[f^\lambda_z = g_\lambda((S^A_x)^* S^A_x)(S^A_x)^*y \]

(4)

depending on the regularization parameter \(\lambda > 0 \) in such a way that

1. the map

\[t \mapsto g_\lambda(t) \]

approximates the function \(t \mapsto 1/t \) as \(\lambda \to 0 \)

implies: \(g_\lambda((S^A_x)^* S^A_x) \) is a family of operators approximating the inverse of \((S^A_x)^* S^A_x\) as \(\lambda \to 0 \)

2. the function

\[g_\lambda : \sigma((S^A_x)^* S^A_x) \longrightarrow \mathbb{R} \]

is bounded
then the spectral theorem ensures that \(g_\lambda((S^A_x)^* S^A_x) \) is a bounded operator
estimator f^λ_z depends on given sample $z \in \mathbb{Z}^n$ (in particular on sample size n) and on regularization parameter $\lambda > 0$

difficulty in applying this method: choice of parameter $\lambda > 0$

final estimator defined with parameter choice rule either

a-priori: $\lambda = \lambda_n$ or

a-posteriori: $\lambda = \lambda_{z,n}$
Rate of Convergence

- aim: study reconstruction error

\[|| f - f^\lambda_z ||_{\mathcal{H}_1} \]

and investigate rate of convergence of estimated solution to true function as the sample size \(n \to \infty \)
Rate of Convergence

- aim: study reconstruction error
 \[\| f - f^\lambda_z \|_{\mathcal{H}_1} \]

 and investigate rate of convergence of estimated solution to true function as the sample size \(n \to \infty \)

- recall: need to impose some source condition

\[f \in \Omega_{r,R} := \{ f \in \mathcal{H}_1 : f = ((S^A)^*S^A)^r h, \quad \| h \|_{\mathcal{H}_1} \leq R \} \]

with \(0 < r, 0 < R \)
Non-asymptotic upper Bound:

Proposition:

Let $\lambda > 0$ and $\rho \in \mathcal{M}(\Omega_{r,R})$ with $0 < r \leq q$. Then with probability at least $1 - \eta$

$$
\| f - f^\lambda_z \|_{\mathcal{H}_1} \leq C_{r,R} C_\eta \left(\lambda^r + \frac{1}{\lambda \sqrt{n}} \right),
$$

for some $C_{r,R} > 0$ and $C_\eta > 0$.

The first term in (5) corresponds to approximation error while the second corresponds to sample error.

The aim is to find the value of λ (a-priori) balancing out the trade-off.
Non-asymptotic upper Bound:

Proposition:

Let $\lambda > 0$ and $\rho \in \mathcal{M}(\Omega_{r,R})$ with $0 < r \leq q$. Then with probability at least $1 - \eta$

$$\| f - f_z^\lambda \|_{\mathcal{H}_1} \leq C_{r,R}C_\eta \left(\lambda^r + \frac{1}{\lambda \sqrt{n}} \right),$$ \hspace{1cm} (5)

for some $C_{r,R} > 0$ and $C_\eta > 0$.

- first term in (5) corresponds to approximation error while the second corresponds to sample error
- aim: find value of λ (a-priori) balancing out the trade-off
Trade-off between approximation error and sample error

- total error
- approx. error
- sample error

Trade-Off
Rate of Convergence and Consistency:

Proposition:
Under the assumptions made above, choose

\[
\lambda_n = \left(\frac{1}{\sqrt{n}} \right)^{\frac{1}{r+1}}.
\]

Then

\[
\lim_{\tau \to \infty} \limsup_{n \to \infty} \sup_{\rho \in M} A(\Omega_r, R) \rho \otimes n (|f - f_{\lambda_n}|_{H^1} > \tau a_n) = 0,
\]

with

\[
a_n = \left(\frac{1}{\sqrt{n}} \right)^{r+1}.
\]
Rate of Convergence and Consistency:

Proposition:

Under the assumptions made above, choose

\[\lambda_n = \left(\frac{1}{\sqrt{n}} \right)^{\frac{1}{r+1}}. \]

Then

\[\lim_{\tau \to \infty} \limsup_{n \to \infty} \sup_{\rho \in \mathcal{M}^A(\Omega_r, R)} \rho^{\otimes n} \left(\| f - f_{\lambda_n}^z \|_{H_1} > \tau a_n \right) = 0, \]

with

\[a_n = \left(\frac{1}{\sqrt{n}} \right)^{\frac{r}{r+1}}. \]
Rate of Convergence and Consistency:

Proposition:

Under the assumptions made above, choose

$$\lambda_n = \left(\frac{1}{\sqrt{n}} \right)^{\frac{1}{r+1}}.$$

Then

$$\lim_{\tau \to \infty} \lim_{n \to \infty} \sup_{\rho \in \mathcal{M}^A(\Omega_r, R)} \rho \otimes^n (\| f - f^{\lambda_n} \|_{H_1} > \tau a_n) = 0,$$

with

$$a_n = \left(\frac{1}{\sqrt{n}} \right)^{\frac{r}{r+1}}.$$

- the bigger the smoothness parameter $r \in (0, q]$ the faster the rate of convergence
- parameter q called **qualification** of method g_{λ}
Enjoy your meal!